
Structures algébriques classiques
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Pour aller plus loin
Il s’agit simplement de faire quelques rappels en cette fin d’année et on essaiera de retenir la définition de l’anneau Z/nZ,
un anneau de référence pour les exercices d’arithmétique.
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Structure algébrique classique

1 Compléments sur les groupes

1.1 Rappels sur la structure de groupe

Définition Soit G un ensemble non vide pour lequel on définit ∗ une loi de composition interne, c’est à une relation binaire
telle que :

∗ : (x, y) ∈ G×G 7−→ x ∗ y ∈ G

On rappelle que (G, ∗) est un groupe pour la loi ∗ si :

1. cette loi est associative : ∀ x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z

2. cette loi possède un élément neutre : ∃ e ∈ G, ∀ x ∈ G, x ∗ e = e ∗ x = x

3. tout élément admet un symétrique par cette loi : ∀ x ∈ G, ∃ sym(x) ∈ G, x ∗ sym(x) = sym(x) ∗ x = e

Remarques

1. Généralement, on commence par vérifier qu’on a bien une loi de composition interne avant de vérifier ces assertions.

2. Si la loi ∗ est commutative, alors on dit que (G, ∗) est un groupe commutatif et dans ce cas, on ne vérifiera les
assertions précédentes que pour un côté.

Soit (G, ∗) un groupe. Alors,

1. l’élément neutre e associé est unique.

2. pour tout élément x ∈ G, le symétrique de x est unique.

Propriété 1 (unicité des éléments remarquables).

I Il suffit de supposer qu’il y en a deux et de prouver l’égalité.

En première année, on voit les premières structures de groupes : le groupe des racines n-ièmes de l’unité, le groupe des
bijections, le groupe symétrique, le groupe linéaire... et il nous faudra pas être surpris si on vous interroge dessus !

Par exemple, voici trois exercices assez classiques et indépendants :

Exemple 1 Soit n ∈ N∗, on se place dans Mn(K) et on note encore (Eij) les matrices élémentaires qui constituent la base
canonique de Mn(K). On appelle alors :

• matrice de transvection toute matrice de la forme :

Tij(λ) = In + λEij , avec λ ∈ K et (i, j) ∈ J1, nK2, i 6= j

• matrice de dilatation toute matrice de la forme :

Di(λ) = In + (λ− 1)Eii , avec λ ∈ K∗ et i ∈ J1, nK

Soient n ∈ N∗ et A ∈Mn(K).

1. Calculer pour tout λ ∈ K et (i, j) ∈ J1, nK2, i 6= j, Tij(λ).A, puis interpréter votre résultat.

2. Soient (i, j) ∈ J1, nK2, i 6= j et λ, µ ∈ K. Calculer Tij(λ).Tij(µ). En déduire que les matrices de transvection sont inversibles
et préciser leur inverse.

3. Calculer pour tout λ ∈ K∗ et i ∈ J1, nK, Di(λ).A, puis interpréter votre résultat.

4. Soient i ∈ J1, nK et λ, µ ∈ K∗. Calculer Di(λ).Di(µ). En déduire que les matrices de dilatation sont inversibles et préciser
leur inverse.

5. En utilisant votre interprétation en termes d’opérations élémentaires, justifier que le produit suivant revient à échanger les
deux lignes Li et Lj :

Dj(−1)Tij(1)Tji(−1)Tij(1).A

Toutes les opérations élémentaires sur les lignes reviennent donc à multiplier à gauche par des matrices de diltatation ou de
transvection, et de la même façon, on peut montrer que les opérations sur les colonnes reviennent à multiplier à droite par ces
matrices. La méthode du pivot de Gauss nous permet alors, par opérations élémentaires, d’écrire que pour toute matrice
A ∈ GLn(K), il existe M1, . . . ,Mp, N1, . . . , Nq des matrices de ce type telles que Mp . . .M1AN1 . . . Nq = In.

6. En déduire que GLn(K) est engendré par les matrices de diltatation et de transvection.
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Exemple 2 Soit n ∈ N∗, on rappelle que Un désigne le groupe des racines n-ièmes de l’unité.

1. Soient a, b ∈ N∗, montrer plus généralement que :

Ua ∩ Ub = Ud , avec d = pgcd(a, b)

2. En déduire la solution du système suivant :

{
z1346 − 1 = 0

z989 − 1 = 0
.

Exemple 3 Soit n ∈ N, n ≥ 2, on rappelle que Sn désigne le groupe des permutations des entiers J1, nK.

1. Justifier que Card(Sn) = n!, puis établir que Sn est engendré par les transpositions de la forme (i j).

2. Montrer que l’ensemble des transpositions de la forme (1 i), i ∈ J2, nK engendrent Sn.

3. Déterminer alors le centre de Sn. On pourra distinguer les cas n = 2 et n > 2.

Notation Etant donné un groupe, sa loi de composition interne sera souvent notée :

• + si celle-ci est commutative et dans ce cas, e = 0G et sym(x) = −x appelé opposé de x.

• . si on n’a pas d’information sur sa commutativité et dans ce cas, e = 1G et sym(x) = x−1 appelé inverse de x.

Définition Soient (G, ∗) un groupe et H ⊂ G. On dit que H est un sous-groupe de G si la loi ∗ induite sur H donne à (H, ∗)
une structure de groupe.

Soit (G, ∗) un groupe. Alors, on a immédiatement :

H est un sous-groupe de (G, ∗) ⇔


H ⊂ G (inclusion)

e ∈ H (élément neutre)

∀ x, y ∈ H, x ∗ y ∈ H (stabilité pour la loi induite)

∀ x ∈ H, sym(x) ∈ H (stabilité par passage aux symériques)

Théorème 2 (caractérisation d’un sous-groupe).

Soit G un groupe. Alors,

• en notation additive, H est un sous-groupe de (G,+) ⇔


H ⊂ G
0G ∈ H
∀ x, y ∈ H, x+ y ∈ H
∀ x ∈ H, −x ∈ H

.

• en notation multiplicative, H est un sous-groupe de (G, .) ⇔


H ⊂ G
1G ∈ H
∀ x, y ∈ H, x.y ∈ H
∀ x ∈ H, x−1 ∈ H

.

Corollaire 3 (cas particulier avec les notations usuelles).

Remarque Pour gagner du temps, on peut aussi remarquer que les deux dernières assertions sont équivalentes à :

x− y ∈ H ou bien x.y−1 ∈ H

On parle aussi de stabilité par somme ou produit tordu.

Soit (G, ∗) un groupe et considérons H1, . . . , Hn des sous-groupes de G. Alors, ∩ni=1Hi désigne encore un sous-groupe de G.

Propriété 4 (intersection de sous-groupes).

I Il suffit de revenir à la caractérisation d’un tel sous-groupe.
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Exemple 4 On note GLn(Z) l’ensemble des matrices deMn(R), à coefficients dans Z, qui sont inversibles et dont l’inverse est à
coefficients dans Z.

1. On suppose que M est à coefficients dans Z. Montrer que M ∈ GLn(Z) si et seulement si det(M) = ±1.

2. En déduire que GLn(Z) est un sous-groupe de GLn(R).

1.2 Sous-groupe engendré par une partie

Dans cette partie, on note . la loi du groupe et on adaptera les notations lorsque celle-ci sera additive.

Définition Soient (G, .) un groupe et A une partie non vide de G. On appelle sous-groupe engendré par A l’intersection de
tous les sous-groupes de G contenant A et il sera noté < A >:

< A >=
⋂

Hsous-groupe,H⊃A

H

Avec les notations de la définitions,

1. < A > désigne le plus petit sous-groupe de G contenant A.

2. < A > peut aussi être vu comme l’ensemble des produits finis :

< A > = {x = x1 . . . xn, avec pour tout i ∈ J1, nK, xi ou x−1
i ∈ A}

Propriété 5 (interprétation ensembliste du sous-groupe engendré par une partie A).

I On montre d’abord qu’il s’agit d’un sous-groupe de G, avant de justifier que c’est le plus petit d’entre eux contenant A.
D’ailleurs, pour le second point, on revient à cette interprétation ensembliste.

Soit (G, .) un groupe et a un élément de G. Alors, on a immédiatement :

< a >= {an, n ∈ Z}

On dit aussi que < a > est monogène et que a désigne un générateur de < a >.

Corollaire 6 (cas particulier des groupes monogènes).

Remarques

1. On a déjà vu de tels groupes, c’est notamment le cas du groupe (Un, .) des racines n-èmes de l’unité :

Un = {ei2kπ/n, k ∈ J0, n− 1K} = < ei2π/n >

2. D’ailleurs, on dit aussi qu’un tel groupe est cylique s’il est monogène et fini.

1.3 Ordre d’un élément dans un groupe

Définition Soit (G, .) un groupe dont on note encore 1G l’élément neutre, et considérons x ∈ G. On dit que x est d’ordre fini
s’il existe n ∈ N∗ tel que xn = 1G.
De plus, le plus petit entier n ∈ N∗ satisfaisant cette égalité s’appeller l’ordre de x et sera noté o(x).

Soit (G, .) un groupe dont on note encore 1G l’élément neutre, et considérons x ∈ G d’ordre p. Alors, on a :

xn = 1G ⇔ p | n

Propriété 7 (relation avec l’ordre de x).

I Par double implication : le sens réciproque est immédiat. Pour le sens direct, il suffit de faire la DE de n par p et on
montre que le reste est nécessairement nul.
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Soit (G, .) un groupe dont on note encore 1G l’élément neutre. On suppose de plus que G est un groupe fini commutatif et
de cardinal n ∈ N∗. Alors, on a pour tout x ∈ G,

xn = 1G

En particulier, l’ordre de x divise card(G).

Propriété 8 (petit théorème de Lagrange).

I On montre d’abord que φ : a 7−→ ax est bijective de G sur G de sorte que
∏
a ax =

∏
a a et par commutativité et

simplification, il vient xn = 1G.

Remarques

1. C’est un résultat assez pratique. Par exemple, si on considère U3 le groupe des racines 3-èmes de l’unité, il s’agit d’un
groupe fini d’ordre 3 et ainsi, on peut affirmer qu’il n’y a pas d’éléments d’ordre 2.

2. Dans le cas particulier où G est cyclique de cardinal n, alors G =< x > et x est nécessairement d’ordre n. En effet, on
a d’une part, o(x)|n et si o(x) < n, alors G ne pourrait pas contenir n éléments. Et ainsi, o(x) = n = card(G).

3. Pour finir, on peut aussi définir la notion de morphisme de groupes : il s’agit d’applications de la forme φ : G −→ H
compatibles avec les lois données. En particulier, on caractérise encore l’injectivité et la surjectivité à l’aide du noyau
et de l’image de φ : {

φ est injective si et seulement si Ker(φ) = {eG}
φ est surjective si et seulement si Im(φ) = H

Cette dernière notion n’est pas l’essence de ce chapitre, mais il ne faudra pas avoir peur de retrouver ces morphismes
dans quelques exercices d’oraux.

Exemple 5 Soit (G, .) un groupe fini et H un sous-groupe de G.

1. Montrer que pour tout a ∈ G, H et aH = {ah;h ∈ H} ont le même nombre d’éléments.

2. Soient a, b ∈ G. Démontrer que aH = bH ou aH ∩ bH = ∅. En déduire que le cardinal de H divise le cardinal de G.

3. Justifier alors que tout groupe fini de cardinal p ∈ P ne possède aucun sous-groupe, à l’exception de G lui-même et {eG}.

Remarque En fait ce dernier exemple désigne le théorème de Lagrange, et il nous permet de prolonger le résultat
précédent sur l’ordre d’un élément : dans un groupe fini G d’ordre n non nécessairement commutatif, le cardinal du sous-
groupe < x > engendré par x divise toujours le cardinal de G et on retrouve :

xn = 1G

2 Compléments sur les anneaux

2.1 Rappels sur la structure d’anneau

Définition Soit A un ensemble non vide pour lequel on définit + et . deux lois de composition interne.
On rappelle que (A,+, .) est un anneau pour les lois + et . si :

1. (A,+) est un groupe commutatif, dont on notera désormais 0A l’élément neutre.

2. la loi . est associative: ∀ x, y, z ∈ A, x.(y.z) = (x.y).z

3. cette loi possède un élément neutre qu’on notera désormais 1A: ∀ x ∈ A, x ∗ 1A = 1A ∗ x = x

4. cette loi est distributive par rapport à +: ∀ x, y, z ∈ A, x.(y + z) = x.y + x.z et (y + z).x = y.x+ z.x

Remarques

1. Généralement, on commence par vérifier qu’on a bien des lois de composition interne avant de vérifier ces assertions.

2. Si la loi . est commutative, on pourra dire que (A,+, .) est un anneau commutatif et dans ce cas, on ne vérifiera
les assertions précédentes que pour un côté.

3. Attention, les éléments d’un anneau n’ont pas forcément d’inverse par la loi . . D’ailleurs, les éléments inversibles d’un
anneau pour la loi . constituent un groupe multiplicatif noté U(A), et si U(A) = A∗, on dit encore que (A,+.) est un
corps.

4. Pour finir, on peut aussi définir la notion de morphisme d’anneaux : il s’agit d’applications de la forme φ : A −→ B
compatibles avec les lois données et pour lesquelles φ(1A) = 1B .
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Notation Avec n ∈ N, on note : nx = x+ . . .+ x (n fois), et xn = x. . . . .x (n fois), avec la convention x0 = 1A.

On retrouve ici toutes les règles de calculs usuels :

1. 0A est absorbant : ∀ x ∈ A, 0A.x = x.0A = 0A

2. soit (x, y) ∈ A2 tel que x et y commutent, alors on a toujours la formule du binôme de Newton :

(x+ y)n =

n∑
k=0

(nk )xk.yn−k =

n∑
k=0

(nk )xn−k.yk

3. soit (x, y) ∈ A2 tel que x et y commutent, alors on a toujours la formule de factorisation :

xn − yn = (x− y).

n−1∑
k=0

xk.yn−k−1 =

n−1∑
k=0

xn−k−1.yk

et ainsi,

• 1A − xn = (1A − x).
∑n−1
k=0 x

k

• En particulier, si 1A − x est inversible dans A par la loi ., on retrouve : (1A − x)−1.(1A − xn) =
∑n−1
k=0 x

k

Propriété 9 (règles de calcul).

Définition Soient (A,+, .) un anneau et B ⊂ A. On dit que B est un sous-anneau de A si les lois + et . induites sur B donne
à (B,+, .) une structure d’anneau.

Soit A un anneau. Alors,

B est un sous-anneau de (A,+, .) ⇔


B ⊂ A
1A ∈ B
∀ x, y ∈ B, x− y ∈ B
∀ x, y ∈ B, x.y ∈ B

Théorème 10 (caractérisation d’un sous-anneau).

I C’est immédiat : on raisonne simplement par double implication.

Ainsi, pour démontrer qu’un ensemble donné est un anneau, on pourra ou bien revenir à la définition d’un tel anneau, ou bien le
voir comme un sous-anneau d’un anneau donné.

Exemple 6 On note Z[i] l’ensemble des entiers de Gauss défini par :

Z[i] = {a+ ib, a, b ∈ Z}

Montrer que Z[i] est un sous-anneau de (C,+, .), et déterminer U(Z[i]) le groupe multiplicatif des éléments inversibles de Z[i].

2.2 Cas particulier des idéaux d’un anneau commutatif

Définition Soit (A,+, .) un anneau commutatif. On appelle idéal toute partie I non vide de A telle que :

1. I est un sous-groupe de (A,+)

2. I est absorbant : ∀ a ∈ A, ∀ x ∈ I, a.x ∈ I

Soient (A,+, .) un anneau commutatif et I un idéal de A.

1. Si 1A ∈ I, alors I = A.

2. Plus généralement, si I contient un élément inversible de A, alors I = A.

Propriété 11 (appartenance de l’élément neutre 1A).

I On utilise à chaque fois le fait que I est absorbant.
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Remarque En fait, la notion d’idéal nous a été très utile cette année et on essaiera de retenir quelques exemples importants :
que ce soit la définition du PGCD ou du PPCM dans les structures euclidiennes, ou alors la définition du polynôme minimal
d’un endomorphisme en dimension finie.

D’ailleurs, on en rappelle ici les deux résultats principaux qui ont déjà été démontrés :

On rappelle dans Z que pour tout (a, b) ∈ Z× Z∗, il existe un unique couple (q, r) ∈ Z× N tel que :{
a = bq + r

0 ≤ r < |b|

Et ainsi, on a : I est un idéal de Z si et seulement s’il existe n ∈ I, I = nZ.
On dit que Z est un anneau principal, car ses idéaux sont engendrés par un seul élément.

Propriété 12 (idéaux de l’anneau des entiers relatifs).

I Cela a déjà été vu et on travaille par double implication : dans le sens direct, une fois le générateur déterminé, on utilisera
le théorème de la division euclidienne pour montrer que I est bien de la forme donné ; pour la réciproque, on revient à la
définition d’un tel idéal.

On rappelle dans K[X] que pour tout (A,B) ∈ K[X]×K[X]∗, il existe un unique couple (Q,R) ∈ (K[X])2 tel que :{
A = BQ+R

deg(R) < deg(B)

Et ainsi, on a : I est un idéal de K[X] si et seulement s’il existe P ∈ I, I = PK[X].
On dit que K[X] est un anneau principal, car ses idéaux sont engendrés par un seul élément.

Propriété 13 (idéaux de l’anneau des polynômes).

I Cela a déjà été vu et on travaille par double implication : dans le sens direct, une fois le générateur déterminé, on utilisera
le théorème de la division euclidienne pour montrer que I est bien de la forme donné ; pour la réciproque, on revient à la
définition d’un tel idéal.

3 Cas particulier de l’anneau quotient Z/nZ

3.1 Présentation et définition

Définition Soit n ∈ N∗ et considérons (x, y) ∈ Z2. On dit que x est congru à y modulo n si y−x ∈ nZ, c’est à dire qu’on note:

x ≡ y [n]⇔ n | y − x

Remarque Comme pour les autres relations de congruence, il s’agit d’une relation d’équivalence dans le sens où cette
relation binaire est :

• réflexive : pour tout x ∈ Z, x ≡ x [n].

• symétrique : pour tout (x, y) ∈ Z2, x ≡ y [n]⇒ y ≡ x [n].

• transitive : pour tout (x, y, z) ∈ Z3, si x ≡ y [n] et y ≡ z [n], alors x ≡ z [n].

D’ailleurs, on rappelle qu’on peut définir les classes d’équivalence associées à une telle relation, et ainsi si x désigne la
classe de x, alors par définition :

x = {y ∈ Z, x ≡ y [n]}

et ces classes d’équivalence définissent une partition naturelle de Z. D’ailleurs, si on a besoin de préciser le modulo avec
lequel on travaille, on pourra toujours écrire x[n] : la classe de x modulo n.

Définition Soit n ∈ N∗. On appelle ensemble quotient Z/nZ l’ensemble des classes d’équivalence de Z pour la relation de
congruence modulo n.
En particulier, on définit l’application surjective πn : Z −→ Z/nZ par :

πn : x 7−→ x
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1. Pour tout x ∈ Z, il existe un unique r ∈ J0, n− 1K tel que x ≡ r [n], et ainsi, x = r : on dit que r est un représentant
irréductible de x.

2. En particulier, on en déduit : Z/nZ = {0, . . . , n− 1}.

Propriété 14 (représentants irréductibles de Z/nZ).

I Le premier point découle de la division euclidienne dans Z. Le second point est alors immédiat puisque toute classe
d’équivalence est de la forme r.

Soit n ∈ N∗. La relation de congruence modulo n est compatible avec l’addition et la multiplication, autrement dit pour tout
a, b, c, d ∈ Z, on a : {

a = b

c = d
⇒

{
a+ c = b+ d

ac = bd

Propriété 15 (compatibilité de l’addition et de la multiplication).

I Il suffit de revenir à la relation de congruence et de montrer sous ces hypothèses que n divise la différence.

Remarque Cette dernière propriété est fondamentale, et elle nous permet de définir des opérations direcement sur Z/nZ.
En effet si on pose pour tout (x, y) ∈ Z/nZ2,

x+ y := x+ y et x× y := xy

alors celles-ci sont bien définies sur les classes d’équivalence au sens où elles ne dépendent pas du choix des représentants.

Soit n ∈ N∗. On peut montrer que (Z/nZ,+,×) est un anneau commutatif dont les éléments neutres pour les lois + et ×
sont respectivement 0 et 1.
En particulier, (Z/nZ,+) est un groupe cyclique de cardinal n et on a pour l’addition :

Z/nZ = < 1 >

Corollaire 16 (structure de l’ensemble quotient).

Soit n ∈ N∗ et on considère (G, .) un groupe monogène dont on note a un générateur.

1. Si G est de cardinal fini n, alors l’application φa : k ∈ Z/nZ 7−→ ak ∈ G est bien définie, et elle désigne un isomorphisme
de groupes de Z/nZ sur G.

2. Si par contre G est infini, alors φa : k ∈ Z 7−→ ak ∈ G est un isomorphisme de groupes de Z sur G.

Propriété 17 (relation avec les groupes monogènes).

I Pour chacun de ces points, on revient à la définition d’un isomorphisme de groupes, c’est à dire une application bijective
compatible avec les opérations de chaque groupe.

3.2 Eléments inversibles de Z/nZ et corps fini à p éléments

Soit n ∈ N∗ et considérons U(Z/nZ) le groupe des éléments inversibles de Z/nZ. Alors,

a ∈ U(Z/nZ)⇔ a ∧ n = 1

Propriété 18 (caractérisation des éléments inversibles de l’anneau quotient).

I On peut procéder par double implication : le théorème de Bézout nous donnera à chaque fois le passage attendu.
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Soit n ∈ N∗. Alors, on rappelle que (Z/nZ,+,×) est un anneau à n éléments 0, . . . , n− 1 et ainsi :

Z/nZ est un corps ⇔ tous ses éléments non nuls sont inversibles ⇔ n est un nombre premier

Corollaire 19 (immédiat).

Définition Soit p ∈ P. On appelle corps fini à p éléments l’ensemble noté Fp et défini tout simplement par :

Fp = Z/pZ

3.3 Théorème des restes chinois et fonction indicatrice d’Euler

Soient p, q ∈ N, p, q ≥ 2 qu’on suppose premiers entre eux.

1. Alors, l’application φ : Z/pqZ −→ Z/pZ× Z/qZ telle que :

φ : a[pq] 7−→ (a[p], a[q])

est bien définie et elle désigne un isomorphisme d’anneaux.

2. En particulier, les ensembles U(Z/pqZ) et U(Z/pZ)× U(Z/qZ) sont isomorphes.

Théorème 20 (des restes chinois).

I On commence par montrer que φ est bien définie, au sens où elle ne dépend pas dureprésentant choisi. Ensuite, on prouve
l’injectivité avant de conclure par cardinalité. Par morphisme d’anneaux, on en déduit que les éléments inversibles sont
isomorphes.

Remarques

1. En fait, cela signifie que sous les conditions p ∧ q = 1, il existe toujours une solution (modulo pq), à un système de
congruence de la forme : {

x ≡ a [p]

x ≡ b [q]

D’ailleurs, pour résoudre un tel système, on pourra revenir à la résolution d’équations diophantiennes.

2. On peut d’ailleurs généraliser l’isomorphisme donné et en notant p1, . . . , pn des entiers premiers entre eux deux à deux,
alors l’application φ définit un isomorphisme de Z/

∏n
i=1 piZ sur Z/p1Z× . . .× Z/pnZ :

φ : a[p1...pn] 7−→ (a[p1], . . . , a[pn])

Exemple 7 Déterminer les solutions dans Z du système de congruence :{
x ≡ 2 [3]

x ≡ 1 [2]

Définition On appelle fonction indicatrice d’Euler l’application ϕ définie sur N∗ par :

ϕ(n) = card({k ∈ J1, nK, k ∧ n = 1}) = card(U(Z/nZ))

Remarques

1. On a évidemment pour tout n ≥ 2, 1 ≤ ϕ(n) ≤ n− 1, et on a même ϕ(p) = p− 1 lorsque p ∈ P.

2. De la même façon, si p est premier, alors :
ϕ(pk) = pk − pk−1

puisqu’on enlève les éléments non premiers avec pk : tous les multiples de p de la forme 1.p, 2.p, . . . , pk−1.p.
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1. Soient p, q ∈ N, p, q ≥ 2 qu’on suppose premiers entre eux. Alors on a d’après le théorème des restes chinois :

ϕ(pq) = ϕ(p)ϕ(q)

2. En particulier, si n ≥ 2 admet pour décomposition primaire n = pα1
1 . . . pαr

r , il vient :

ϕ(n) = n

r∏
i=1

(1− 1

pi
)

Théorème 21 (calcul explicite de la fonction indicatrice d’Euler).

I Le premier point est évident cra les éléments inversibles sont isomorphes, donc de même cardinal. Le second point découle
du premier et de la remarque précédente.

Soit n ∈ N∗, alors pour tout a ∈ Z tel que a ∧ n = 1,

aϕ(n) = 1 dans Z/nZ, c’est à dire : aϕ(n) ≡ 1 [n]

Corollaire 22 (théorème d’Euler).

I C’est immédiat : si a est premier avec n, il est dans le groupe des éléments inversibles de cardinal ϕ(n) et on invoque le
petit théorème de Lagrange.

Remarques

1. Dans le cas particulier où p ∈ P, on retrouve le petit théorème de Fermat que vous avez démontré en première
année :

∀ a ∈ Z, ap−1 ≡ 1 [p]

2. Ce qui achève l’année... à condition d’aller au bout des ces derniers exemples d’applications :

Exemple 8 Soit n ∈ N∗. Etablir que :

n =
∑
d|n

ϕ(d)

On pourra par exemple introduire les fractions de la forme p/n, p ∈ J1, nK et considérer une partition de cet ensemble.

Exemple 9 Soit p ∈ N, p ≥ 2. Montrer le théorème de Wilson, c’est à dire :

(p− 1)! ≡ −1 [p] ⇔ p est premier

Exemple 10 Soit n ∈ N, n ≥ 2. Déterminer les éléments nilpotents de Z/nZ.
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