Chapitre 14

Structures algébriques classiques

Dans ce dernier chapitre, il s’agit simplement de revenir sur quelques mnotions
algébriques qui peuvent étre utiles et qui ont déja étudiées en cours d’année : les
groupes ou les idéauzr d’un anneau commutatif... C’est surtout l’occasion de revenir

sur quelques exemples et de présenter un cas particulier, celui de l’anneau quotient
Z/nZ.
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Pour aller plus loin
1l s’agit simplement de faire quelques rappels en cette fin d’année et on essaiera de retenir la définition de ’anneau Z/nZ,
un anneau de référence pour les exercices d’arithmétique.
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1 Compléments sur les groupes

1.1 Rappels sur la structure de groupe

Définition Soit G un ensemble non vide pour lequel on définit * une loi de composition interne, c’est a une relation binaire
telle que :
x:(x,y) EGXGEr—2xy€G

On rappelle que (G, x) est un groupe pour la loi * si :

1. cette loi est associative : Vz,y,z € G, x x (y*2) = (x xy) * 2z

2. cette loi possede un élément neutre : 3ec G, Vx € G, zxe=ecxx ==z

3. tout élément admet un symétrique par cette loi : Vo € G, I sym(z) € G, = * sym(x) = sym(z) *xz =e

Remarques

1. Généralement, on commence par vérifier qu’on a bien une loi de composition interne avant de vérifier ces assertions.

2. Si la loi * est commutative, alors on dit que (G, %) est un groupe commutatif et dans ce cas, on ne vérifiera les
assertions précédentes que pour un coté.

{Propriété 1 (unicité des éléments remarquables).]

Soit (G, *) un groupe. Alors,
1. I’élément neutre e associé est unique.

2. pour tout élément x € G, le symétrique de = est unique.

» [l suffit de supposer qu’il y en a deuz et de prouver [’égalité.

En premiere année, on voit les premieres structures de groupes : le groupe des racines n-iemes de 1’unité, le groupe des
bijections, le groupe symétrique, le groupe linéaire... et il nous faudra pas étre surpris si on vous interroge dessus !

Par exemple, voici trois exercices assez classiques et indépendants :

Exemple 1 Soit n € N*; on se place dans M, (K) et on note encore (E;;) les matrices élémentaires qui constituent la base
canonique de M, (K). On appelle alors :

e matrice de transvection toute matrice de la forme :
T;;(A) = I, + AE;j , avec A € K et (4,5) € [1,n]?, i # j
e matrice de dilatation toute matrice de la forme :
Di(A\) =In+ (A—1)E; , avec A € K" et 5 € [1,n]
Soient n € N* et A € M,,(K).
1. Calculer pour tout A € K et (3,5) € [1,n]?, i # 7, Ti;()\).A, puis interpréter votre résultat.

2. Soient (i,5) € [1,n]?, 4 # j et A\, u € K. Calculer T;;(\).Ti;(12). En déduire que les matrices de transvection sont inversibles
et préciser leur inverse.

3. Calculer pour tout A € K* et ¢ € [1,n], D;()\).A, puis interpréter votre résultat.

4. Soient 7 € [1,n] et A\, u € K*. Calculer D;(\).D;(r). En déduire que les matrices de dilatation sont inversibles et préciser
leur inverse.

5. En utilisant votre interprétation en termes d’opérations élémentaires, justifier que le produit suivant revient & échanger les
deux lignes L; et L :
D;(=1)T; (1) T;:(-1)T35(1). A

Toutes les opérations élémentaires sur les lignes reviennent donc a multiplier & gauche par des matrices de diltatation ou de
transvection, et de la méme fagon, on peut montrer que les opérations sur les colonnes reviennent a multiplier & droite par ces
matrices. La méthode du pivot de Gauss nous permet alors, par opérations élémentaires, d’écrire que pour toute matrice
A€ gL, (K), il existe Ma, ..., M,, Ni,...,Nq des matrices de ce type telles que M, ... M1 ANy ...Nq = I,.

6. En déduire que GL,, (K) est engendré par les matrices de diltatation et de transvection.
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Exemple 2 Soit n € N*, on rappelle que U,, désigne le groupe des racines n-iemes de I'unité.

1. Soient a,b € N*, montrer plus généralement que :

U, NU, = Uy , avec d = pgcd(a, b)

1346 _ 1 _

z
2. En déduire la solution du systéme suivant : { 959 _ 1 _
z — =

Exemple 3 Soit n € N,n > 2, on rappelle que S,, désigne le groupe des permutations des entiers [1,n].

1. Justifier que Card(Sy,) = n!, puis établir que S, est engendré par les transpositions de la forme (¢ j).
2. Montrer que I’ensemble des transpositions de la forme (1 4), ¢ € [2,n] engendrent S,,.
3. Déterminer alors le centre de S,,. On pourra distinguer les cas n =2 et n > 2.
Notation Etant donné un groupe, sa loi de composition interne sera souvent notée :
e + si celle-ci est commutative et dans ce cas, e = O¢ et sym(z) = —x appelé opposé de .

e . si on n’a pas d’information sur sa commutativité et dans ce cas, e = 1¢ et sym(z) = z~! appelé inverse de z.

Définition Soient (G, x) un groupe et H C G. On dit que H est un sous-groupe de G si la loi * induite sur H donne & (H, x)
une structure de groupe.

{Théor‘eme 2 (caractérisation d’un sous—groupe).]

Soit (G, *) un groupe. Alors, on a immédiatement :

H C @ (inclusion)

€ H (élé t t
H est un sous-groupe de (G, x) < y (élément neutre) o, L
Vaz,y € H, zxy € H (stabilité pour la loi induite)

Va € H, sym(z) € H (stabilité par passage aux symériques)

{Corollaire 3 (cas particulier avec les notations usuelles).]

Soit G un groupe. Alors,

HcG
0c € H
e en notation additive, H est un sous-groupe de (G, +) < ¢
Ve,yec H, x+ye H

VeeH, —x€ H

HcCG
lea € H
Ve,ye H, x.y e H
VeeH o 'ecH

e en notation multiplicative, H est un sous-groupe de (G,.) <

Remarque Pour gagner du temps, on peut aussi remarquer que les deux derniéres assertions sont équivalentes a :
. -1
r—y€ Houbienzy "€ H

On parle aussi de stabilité par somme ou produit tordu.

Propriété 4 (intersection de sous—groupes).]

Soit (G, *) un groupe et considérons Hi, ..., H, des sous-groupes de G. Alors, Nj_, H; désigne encore un sous-groupe de G.

» Il suffit de revenir a la caractérisation d’un tel sous-groupe.
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Exemple 4 On note G£,,(Z) ensemble des matrices de M, (R), & coefficients dans Z, qui sont inversibles et dont 'inverse est &
coefficients dans Z.

1. On suppose que M est a coefficients dans Z. Montrer que M € GL,,(Z) si et seulement si det(M) = +1.

2. En déduire que GL,(Z) est un sous-groupe de GL,, (R).

1.2 Sous-groupe engendré par une partie

Dans cette partie, on note . la loi du groupe et on adaptera les notations lorsque celle-ci sera additive.

Définition Soient (G,.) un groupe et A une partie non vide de G. On appelle sous-groupe engendré par A lintersection de
tous les sous-groupes de G contenant A et il sera noté < A >:

< A>= N H

Hsous-groupe,H DA

{Propriété 5 (interprétation ensembliste du sous-groupe engendré par une partie A)]

Avec les notations de la définitions,
1. < A > désigne le plus petit sous-groupe de G contenant A.
2. < A > peut aussi étre vu comme ’ensemble des produits finis :

<A>={z=um...2,, avec pour tout i € [1,n], z; ou z; * € A}

» On montre d’abord qu’il s’agit d’un sous-groupe de G, avant de justifier que c’est le plus petit d’entre eur contenant A.
D’ailleurs, pour le second point, on revient a cette interprétation ensembliste.

{Corollaire 6 (cas particulier des groupes monogénes).}

Soit (G,.) un groupe et a un élément de G. Alors, on a immédiatement :
<a>={a", nez}

On dit aussi que < a > est monogeéne et que a désigne un générateur de < a >.

Remarques

1. On a déja vu de tels groupes, c’est notamment le cas du groupe (Uy,.) des racines n-émes de I'unité :
U, = {2/ ke [0,n—1]} = < ™" >
2. D’ailleurs, on dit aussi qu'un tel groupe est cylique s’il est monogene et fini.

1.3 Ordre d’un élément dans un groupe

Définition Soit (G,.) un groupe dont on note encore 1¢ ’élément neutre, et considérons = € G. On dit que z est d’ordre fini
s'il existe n € N* tel que z" = 1¢.
De plus, le plus petit entier n € N* satisfaisant cette égalité s’appeller 'ordre de z et sera noté o(x).

{Propriété 7 (relation avec l'ordre de m)]

Soit (G, .) un groupe dont on note encore 1 I’élément neutre, et considérons x € G d’ordre p. Alors, on a :

" =lg&pln

» Par double implication : le sens réciproque est immédiat. Pour le sens direct, il suffit de faire la DE de n par p et on
montre que le reste est nécessairement nul.
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{Propriété 8 (petit théoréeme de Lagrange).}

Soit (G, .) un groupe dont on note encore 1¢ ’élément neutre. On suppose de plus que G est un groupe fini commutatif et
de cardinal n € N*. Alors, on a pour tout = € G,

itn:lc

En particulier, 'ordre de = divise card(G).

» On montre d’abord que ¢ : a — ax est bijective de G sur G de sorte que [[, ax = [], a et par commutativité et
simplification, il vient z" = 1¢.

Remarques

1. C’est un résultat assez pratique. Par exemple, si on considére Us le groupe des racines 3-emes de I'unité, il s’agit d’un
groupe fini d’ordre 3 et ainsi, on peut affirmer qu’il n’y a pas d’éléments d’ordre 2.

2. Dans le cas particulier ou G est cyclique de cardinal n, alors G =< x > et x est nécessairement d’ordre n. En effet, on
a d’une part, o(z)|n et si o(xz) < n, alors G ne pourrait pas contenir n éléments. Et ainsi, o(z) = n = card(G).

3. Pour finir, on peut aussi définir la notion de morphisme de groupes : il s’agit d’applications de la forme ¢ : G — H
compatibles avec les lois données. En particulier, on caractérise encore l'injectivité et la surjectivité a I’aide du noyau
et de 'image de ¢ :

¢ est injective si et seulement si Ker(¢) = {ea}
¢ est surjective si et seulement si Im(¢) = H

Cette derniere notion n’est pas ’essence de ce chapitre, mais il ne faudra pas avoir peur de retrouver ces morphismes
dans quelques exercices d’oraux.
Exemple 5 Soit (G,.) un groupe fini et H un sous-groupe de G.

1. Montrer que pour tout a € G, H et aH = {ah; h € H} ont le méme nombre d’éléments.
2. Soient a,b € G. Démontrer que aH = bH ou aH NbH = (). En déduire que le cardinal de H divise le cardinal de G.

3. Justifier alors que tout groupe fini de cardinal p € P ne posséde aucun sous-groupe, a ’exception de G lui-méme et {ec}.

Remarque En fait ce dernier exemple désigne le théoréme de Lagrange, et il nous permet de prolonger le résultat
précédent sur l'ordre d’un élément : dans un groupe fini G d’ordre n non nécessairement commutatif, le cardinal du sous-
groupe < x > engendré par z divise toujours le cardinal de G et on retrouve :

" =1¢g

2 Compléments sur les anneaux

2.1 Rappels sur la structure d’anneau

Définition Soit A un ensemble non vide pour lequel on définit 4+ et . deux lois de composition interne.
On rappelle que (A, +,.) est un anneau pour les lois + et . si:

1. (A, +) est un groupe commutatif, dont on notera désormais 04 ’élément neutre.
2. laloi . est associative: Vz,y,z € A, z.(y.2) = (z.y).z

3. cette loi possede un élément neutre qu’on notera désormais 1a: Vo € A, xxla=laxx =2

4. cette loi est distributive par rapport & +: Vz,y,2 € A, z.(y+2) =xzy+z.zet (y+2)z=yr+ 22

Remarques

1. Généralement, on commence par vérifier qu’on a bien des lois de composition interne avant de vérifier ces assertions.

2. Sila loi . est commutative, on pourra dire que (A, +,.) est un anneau commutatif et dans ce cas, on ne vérifiera
les assertions précédentes que pour un coté.

3. Attention, les éléments d’un anneau n’ont pas forcément d’inverse par la loi . . D’ailleurs, les éléments inversibles d’un
anneau pour la loi . constituent un groupe multiplicatif noté U(A), et si U(A) = A", on dit encore que (4, +.) est un
corps.

4. Pour finir, on peut aussi définir la notion de morphisme d’anneaux : il s’agit d’applications de la forme ¢ : A — B
compatibles avec les lois données et pour lesquelles ¢p(14) = 1.
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Notation Avec n € N, on note : nz = + ...+ (n fois), et 2™ = x. ... .z (n fois), avec la convention 2° = 14.

{Propriété 9 (regles de calcul).]

On retrouve ici toutes les regles de calculs usuels :
1. 04 est absorbant : Vo € A, Ou.z = 2.04 =04

2. soit (z,y) € A? tel que z et y commutent, alors on a toujours la formule du binéme de Newton :

n n

(@+y)" =S Oty = S [ty

k=0 k=0

3. soit (x,y) € A? tel que = et y commutent, alors on a toujours la formule de factorisation :
Yy Y )

n—1 n—1
e — Yyt = ($ o y) Zxky —k—1 _ Z xnfkfl yk
k=0 k=0

et ainsi,
e lg—a"=(la—x). Y rsa"

e En particulier, si 14 — « est inversible dans A par la loi ., on retrouve : (14 — )~ '.(14 —2") = ZZ;S z®

Définition Soient (A, +,.) un anneau et B C A. On dit que B est un sous-anneau de A si les lois + et . induites sur B donne,
a (B,+,.) une structure d’anneau.

{Théor‘eme 10 (caractérisation d’un sous—anneau).]

Soit A un anneau. Alors,
BCA
14 € B
Ve,ye B, x—ye€B
Vz,ye B, z.y € B

B est un sous-anneau de (4,+,.) <

» (C’est immédiat : on raisonne simplement par double implication.

Ainsi, pour démontrer qu’un ensemble donné est un anneau, on pourra ou bien revenir a la définition d’un tel anneau, ou bien le
voir comme un sous-anneau d’'un anneau donné.

Exemple 6 On note Z[i] 'ensemble des entiers de Gauss défini par :
Z[i) = {a+ b, a,b € Z}

Montrer que Z[i] est un sous-anneau de (C,+,.), et déterminer U(Z[i]) le groupe multiplicatif des éléments inversibles de Z[i].

2.2 Cas particulier des idéaux d’un anneau commutatif

Définition Soit (A, +,.) un anneau commutatif. On appelle idéal toute partie I non vide de A telle que :

1. I est un sous-groupe de (A4, +)

2. I est absorbant : Vae A, Vxel, ax el

{Propriété 11 (appartenance de 1’élément neutre 1 A).]

Soient (A, +,.) un anneau commutatif et I un idéal de A.

1. Sila €1, alors I = A.

2. Plus généralement, si I contient un élément inversible de A, alors I = A.

» On utilise a chaque fois le fait que I est absorbant.

www.cpgemp-troyes.fr 6


http://www.cpgemp-troyes.fr/

Chapitre 14
MP - Lycée Chrestien de Troyes Structure algébrique classique

Remarque En fait, la notion d’idéal nous a été tres utile cette année et on essaiera de retenir quelques exemples importants :
que ce soit la définition du PGCD ou du PPCM dans les structures euclidiennes, ou alors la définition du polynéme minimal
d’un endomorphisme en dimension finie.

D’ailleurs, on en rappelle ici les deux résultats principaux qui ont déja été démontrés :

{Propriété 12 (idéaux de anneau des entiers relatifs).]

On rappelle dans Z que pour tout (a,b) € Z x Z*, il existe un unique couple (q,7) € Z x N tel que :

a=bqg+r
0<r<lb
Et ainsi, on a : I est un idéal de Z si et seulement s’il existe n € I, I = nZ.
On dit que Z est un anneau principal, car ses idéaux sont engendrés par un seul élément.

» Cela a déja été vu et on travaille par double implication : dans le sens direct, une fois le générateur déterminé, on utilisera
le théoréme de la division euclidienne pour montrer que I est bien de la forme donné ; pour la réciproque, on revient a la
définition d’un tel idéal.

{Propriété 13 (idéaux de anneau des polynémes).}

On rappelle dans K[X] que pour tout (A4, B) € K[X] x K[X]*, il existe un unique couple (Q, R) € (K[X])? tel que :

A=BQ+R
deg(R) < deg(B)

Et ainsi, on a : I est un idéal de K[X] si et seulement s’il existe P € I, I = PK[X].
On dit que K[X] est un anneau principal, car ses idéaux sont engendrés par un seul élément.

» Cela a déja été vu et on travaille par double implication : dans le sens direct, une fois le générateur déterminé, on utilisera
le théoréme de la division euclidienne pour montrer que I est bien de la forme donné ; pour la réciproque, on revient a la
définition d’un tel idéal.

3 Cas particulier de ’anneau quotient Z/nZ

3.1 Présentation et définition

Définition Soit n € N* et considérons (x,y) € Z*. On dit que x est congru & y modulo n si y —x € nZ, c’est & dire qu’'on note:

r=ynjen|y—=c

Remarque Comme pour les autres relations de congruence, il s’agit d’'une relation d’équivalence dans le sens ou cette
relation binaire est :

e réflexive : pour tout z € Z, x = z [n].
e symétrique : pour tout (z,y) € Z%, z =y [n] = y = = [n].
e transitive : pour tout (z,y,2) € Z% six =y [n] et y = 2 [n], alors x = z [n].

D’ailleurs, on rappelle qu’on peut définir les classes d’équivalence associées a une telle relation, et ainsi si T désigne la
classe de x, alors par définition :

T={y€Z z=ylnl}

et ces classes d’équivalence définissent une partition naturelle de Z. D’ailleurs, si on a besoin de préciser le modulo avec
lequel on travaille, on pourra toujours écrire zI" : la classe de z modulo n.

Définition Soit n € N*. On appelle ensemble quotient Z/nZ ’ensemble des classes d’équivalence de Z pour la relation de
congruence modulo n.
En particulier, on définit 'application surjective m, : Z — Z/nZ par :

M : LH——T
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{Propriété 14 (représentants irréductibles de Z/ nZ)]

1. Pour tout x € Z, il existe un unique r € [0,n — 1] tel que = = r [n], et ainsi, T =T : on dit que r est un représentant
irréductible de 7.

2. En particulier, on en déduit : Z/nZ = {0,...,n — 1}.

» Le premier point découle de la division euclidienne dans Z. Le second point est alors immédiat puisque toute classe
d’équivalence est de la forme T.

{Propriété 15 (compatibilité de I'addition et de la multiplication).]

Soit n € N*. La relation de congruence modulo n est compatible avec I’addition et la multiplication, autrement dit pour tout
a,b,c,d €Z,on a:

» Il suffit de revenir a la relation de congruence et de montrer sous ces hypothéses que n divise la différence.

Ql
Il

ol
Il
Ql o

Remarque Cette dernicre propriété est fondamentale, et elle nous permet de définir des opérations direcement sur Z/nZ.
En effet si on pose pour tout (Z,7) € Z/nZ?,

Tty =xz+y et TXY:=7TY

alors celles-ci sont bien définies sur les classes d’équivalence au sens ou elles ne dépendent pas du choix des représentants.

{Corollaire 16 (structure de ensemble quotient).]

Soit n € N*. On peut montrer que (Z/nZ,+, x) est un anneau commutatif dont les éléments neutres pour les lois + et x
sont respectivement 0 et 1.
En particulier, (Z/nZ,+) est un groupe cyclique de cardinal n et on a pour I'addition :

Z/nZ =<1>

{Propriété 17 (relation avec les groupes monog‘enes).}

Soit n € N* et on considére (G,.) un groupe monogene dont on note a un générateur.

1. Si G est de cardinal fini n, alors ’application ¢, : k € Z/nZ — a® € G est bien définie, et elle désigne un isomorphisme
de groupes de Z/nZ sur G.

2. Si par contre G est infini, alors ¢4 : k € Z —> a* € G est un isomorphisme de groupes de Z sur G.

» Pour chacun de ces points, on revient a la définition d’un isomorphisme de groupes, c’est a dire une application bijective
compatible avec les opérations de chaque groupe.

3.2 Eléments inversibles de Z/nZ et corps fini a p éléments

Propriété 18 (caractérisation des éléments inversibles de I’anneau quotient).]

Soit n € N* et considérons U(Z/nZ) le groupe des éléments inversibles de Z/nZ. Alors,

acU(Z/nZ) < aNAn=1

» On peut procéder par double implication : le théoréeme de Bézout nous donnera a chaque fois le passage attendu.

www.cpgemp-troyes.fr 8


http://www.cpgemp-troyes.fr/

Chapitre 14
MP - Lycée Chrestien de Troyes Structure algébrique classique

{Corollaire 19 (immédiat) ]

Soit n € N*. Alors, on rappelle que (Z/nZ,+, X) est un anneau & n éléments 0,...,n — 1 et ainsi :

Z/nZ est un corps < tous ses éléments non nuls sont inversibles < n est un nombre premier

Définition Soit p € P. On appelle corps fini & p éléments ’ensemble noté F, et défini tout simplement par :

F, = Z/pZ

3.3 Théoréme des restes chinois et fonction indicatrice d’Euler

{Théoréme 20 (des restes chinois).]

Soient p,q € N, p, ¢ > 2 qu’on suppose premiers entre eux.

1. Alors, 'application ¢ : Z/pqZ — Z/pZ x Z/qZ telle que :
b alrdl (a“’],a[q])
est bien définie et elle désigne un isomorphisme d’anneaux.

2. En particulier, les ensembles U(Z/pqZ) et U(Z/pZ) x U(Z/qZ) sont isomorphes.

» On commence par montrer que ¢ est bien définie, au sens ou elle ne dépend pas dureprésentant choisi. Ensuite, on prouve
lingectivité avant de conclure par cardinalité. Par morphisme d’anneaux, on en déduit que les éléments inversibles sont
isomorphes.

Remarques

1. En fait, cela signifie que sous les conditions p A ¢ = 1, il existe toujours une solution (modulo pgq), & un systéme de
congruence de la forme :

D’ailleurs, pour résoudre un tel systeme, on pourra revenir a la résolution d’équations diophantiennes.

2. On peut d’ailleurs généraliser 'isomorphisme donné et en notant p1, ..., p, des entiers premiers entre eux deux a deux,
alors Papplication ¢ définit un isomorphisme de Z/ [[}, p:iZ sur Z/p1Z X ... X Z/pnZ :

. =[p1---Pn] —=[p1] —[pn]
o:a — (@, ..., a"")

Exemple 7 Déterminer les solutions dans Z du systéeme de congruence :

Définition On appelle fonction indicatrice d’Euler application ¢ définie sur N* par :

p(n) = card({k € [1,n], k An=1}) = card(U(Z/nZ))

Remarques
1. On a évidemment pour tout n > 2, 1 < p(n) <n —1, et on a méme p(p) = p — 1 lorsque p € P.

2. De la méme facon, si p est premier, alors :
k ko k-1
e(p")=p" —p

puisqu’on enleve les éléments non premiers avec p* : tous les multiples de p de la forme 1.p,2.p,...,p* t.p.
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Chapitre 14
MP - Lycée Chrestien de Troyes Structure algébrique classique

{Théor‘eme 21 (calcul explicite de la fonction indicatrice d’Euler).}

1. Soient p,q € N, p,q > 2 qu’on suppose premiers entre eux. Alors on a d’apres le théoréme des restes chinois :
¢(pg) = ¢(P)v(q)

2. En particulier, si n > 2 admet pour décomposition primaire n = pJ* ...pg", il vient :

Z 1
w(n) = nil:[l(l - E)

» Le premier point est évident cra les éléments inversibles sont isomorphes, donc de méme cardinal. Le second point découle
du premier et de la remarque précédente.

Corollaire 22 (théoreme d’Euler).]

Soit n € N*, alors pour tout a € Z tel que a An =1,

a@*™ =T dans Z/nZ, c’est a dire : a®™ =1 [n]

» C’est immédiat : si a est premier avec n, il est dans le groupe des éléments inversibles de cardinal p(n) et on invoque le
petit théoréme de Lagrange.

Remarques

1. Dans le cas particulier ou p € P, on retrouve le petit théoréme de Fermat que vous avez démontré en premiere
année :
VaecZ, a" ' =1]p

2. Ce qui acheéve 'année... & condition d’aller au bout des ces derniers exemples d’applications :

Exemple 8 Soit n € N*. Etablir que :

n="> o(d)

dln

On pourra par exemple introduire les fractions de la forme p/n, p € [1,n] et considérer une partition de cet ensemble.

Exemple 9 Soit p € N,p > 2. Montrer le théoréme de Wilson, c’est a dire :

(p—1)!=-1[p] & p est premier

Exemple 10 Soit n € N, n > 2. Déterminer les éléments nilpotents de Z/nZ.
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