
Eléments de calcul différentiel

Chapitre 13

On poursuit l’étude des fonctions vectorielles avec ici les fonctions d’une variable vec-
torielle à valeurs vectorielles. On revient notamment sur la notion de différentiabilité
qui nous permettra d’obtenir une approximation linéaire de la différence f(a + h) −
f(a)... cela sera très utile dans l’étude des champs scalaires, car on pourra exhiber,
à l’aide d’un développement limité vectoriel, des conditions pour l’existence d’un ex-
tremum.
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3.3 Problème des extremas liés . . . . . . . . . . . . . . . . . . . . . . . . 13

Programmes 2022

Pour aller plus loin
Ce chapitre n’est pas facile, que ce soit en raison des notations ou du travail sur les vecteurs : il nécessite donc beaucoup
de rigueur dans la compréhension des objets. Malgré tout, on définit ici une notion utile : la différentiabilité et on essaiera
de retenir quelques exemples d’application très classiques pour les matrices, avec notamment une autre preuve du théorème
spectral.
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1 Notion de fonction différentiable

Dans tout ce chapitre, on travaille dans des espaces vectoriels réels, normés et de dimension finie, et les fonctions manipulées
seront toutes définies sur un ouvert U inclus dans un espace vectoriel normé E de sorte que :

a ∈ U ⇒ ∃ ε > 0, B(a, ε) ⊂ U

et ainsi, au voisinage de a, on pourra toujours considérer h tel que a+ h ∈ U .

1.1 Existence et unicité de la différentielle

Définition Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , a ∈ U .

• On dit que f est différentiable en a s’il existe une application linéaire La ∈ L(E,F ) telle que :

f(a+ h) = f(a) + La(h) + o
h→0

(‖h‖)

• Plus généralement, on dit que f est différentiable sur U si f est différentiable en tout point de U .

Remarques

1. Vérifier que f est différentiable en un point revient à montrer qu’on peut donner une approximation linéaire de la
différence f(a+ h)− f(a) au voisinage de a.

2. D’ailleurs, pour une fonction vectorielle d’une variable réelle, cette notion de différentiabilité équivaut à la dérivabilité.
En effet, si f : I −→ F , on rappelle qu’elle est dérivable en a si et seulement si :

f(a+ h) = f(a) + h.f ′(a) + o(h)

et dans ce cas, on peut dire que f est différentiable en a avec La(h) = h.f ′(a). La réciproque est immédiate puisque la
linéarité de L nous donne un développement limité de f en a, et donc sa dérivabilité :

f(a+ h) = f(a) + La(h) + o(|h|)⇒ f(a+ h) = f(a) + h.La(1) + o(h)

3. Malheureusement, dans le cas plus général des fonctions d’une variable vectorielle, on ne pourra pas toujours parler de
dérivabilité (car le taux d’accroissement peut ne pas avoir de sens) et on lui préférera la notion de différentiabilité
: c’est là une des difficultés de ce chapitre.

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , a ∈ U . On suppose de plus
que f est différentiable en a. Alors, il existe une unique application linéaire La ∈ L(E,F ) telle que :

f(a+ h) = f(a) + La(h) + o(‖h‖)

Cette application désigne l’application linéaire tangente ou plus simplement, la différentielle de f en a qu’on notera
dfa(h).

Propriété 1 (unicité de la différentielle).

I L’existence est immédiate. Pour l’unicité, on raisonne par l’absurde de sorte que dans Lc(E,F ), α = |‖L1 − L2‖| 6= 0 et
on se ramène à la différence L1(h)− L2(h) = o(‖h‖) afin d’obtenir une contradiction sur la norme subordonnée.

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , a ∈ U . On suppose de plus
que f est différentiable en a. Alors, f est continue en a.

Propriété 2 (une fonction différentiable est continue).

I On revient à la définition et on montre par continuité de la différentielle que f(a+ h) −→ f(a) quand h→ 0.

Soient E1, E2, F des espaces vectoriels normés de dimension finie.

1. Si L désigne une application linéaire de E1 dans F , alors L est différentiable sur E1 et on a en tout point a ∈ E1 :

dLa : h 7−→ L(h)

2. Si B désigne une application bilinéaire de E1 ×E2 dans F , alors B est différentiable sur E1 ×E2 et on a en tout point
a = (a1, a2) ∈ E1 × E2 :

dBa : h 7−→ B(h1, a2) +B(a1, h2)

Propriété 3 (cas particulier des applications linéaires et bilinéaires).
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I On revient à chaque fois la différence en a+h et a, et on pensera à reconnâıtre une partie linéaire et une partie négligeable
en o(‖h‖), d’ailleurs en dimension finie on pourra invoquer la caractérisation des applications linéaires continues.

Exemple 1 Dans cet exercice, ‖.‖ désigne une norme d’algèbre sur Mn(R), c’est-à-dire une norme vérifiant pour tout couple
(A,B) de matrices de Mn(R), ‖AB‖ 6 ‖A‖ ‖B‖.

1. Démontrer que pour toute matrice A de Mn(R), la série
∑
k≥0

1

k!
Ak converge. On notera eA sa somme.

2. Montrer que l’application A 7−→ eA est continue sur Mn(R).

3. Si H ∈ Mn(R) est une matrice non nulle de la boule de centre 0 et de rayon r > 0, déterminer la limite de
1

‖H‖

+∞∑
k=2

1

k!
Hk

lorsque H tend vers 0.

4. En déduire que l’application A 7−→ eA est différentiable en la matrice 0. On précisera sa différentielle en 0.

1.2 Opérations sur les fonctions différentiables

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f, g : U ⊂ E −→ F , a ∈ U . On suppose de plus
que f, g sont différentiables en a. Alors, pour tout λ ∈ R, λf + g est encore différentiable en a et :

d(λf + g)a : h 7−→ λdfa(h) + dga(h)

Propriété 4 (combinaison linéaire de fonctions différentiables).

I Comme pour les développements limités, on revient à la définition en o(‖h‖).

Soit f : U ⊂ E −→ F , a ∈ U et considérons L : F −→ G une application linéaire. On suppose de plus que f est différentiable
en a, alors L ◦ f est différentiable en a et on peut encore montrer que :

d(L ◦ f)a : h 7−→ L ◦ dfa(h)

Propriété 5 (composée d’une application linéaire et d’une fonction différentiable).

I Comme pour les développements limités, on revient à la définition en o(‖h‖).

Soient f1 : U ⊂ E −→ F1, f2 : U ⊂ E −→ F2, a ∈ U et considérons B : F1×F2 −→ G une application bilinéaire. On suppose
de plus que f1, f2 sont différentiables en a, alors B(f1, f2) est différentiable en a et on peut encore montrer que :

dB(f1, f2)a : h 7−→ B(d(f1)a(h), f2(a)) +B(f1(a), d(f2)a(h))

Propriété 6 (composée d’une application bilinéaire et de deux fonctions différentiables).

I Comme pour les développements limités, on revient à la définition en o(‖h‖).

Remarque Ce dernier résultat se généralise et on pourra même décrire la différentielle d’une application multi-linéaire.
Autrement dit, en notant M une application n-linéaire et si f1, . . . , fn : U ⊂ E −→ Fi sont différentiables en a, alors
M(f1, . . . , fn) est différentiable en a et on a :

dM(f1, . . . , fn)a =

n∑
k=1

M(f1, . . . , d(fk)a, . . . , fn)

Soient E,F,G des espaces vectoriels normés de dimension finie, et considérons f : U ⊂ E −→ F , g : V ⊂ F −→ G, a ∈ U ,
f(U) ⊂ V . On suppose de plus que f est différentiable en a et g différentiale en f(a), alors g ◦ f est encore différentiable en
a et on a :

d(g ◦ f)a : h 7−→ dgf(a) ◦ dfa(h)

Propriété 7 (composée de deux fonctions différentiables).

I On revient à la définition en o(‖h‖), par contre on écrira d’abord la différentiabilité de f en a, de g en f(a) avant d’aller
chercher g ◦ f(a+ h) : on pourra alors utiliser la linéarité des applications différentielles.
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2 Dérivées partielles et fonctions de classe C1

2.1 Définition et expression de la différentielle à l’aide des dérivées partielles

Définition Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , a ∈ U .

• On dit que f admet une dérivée en a suivant le vecteur h ∈ E si la fonction vectorielle φ : t 7−→ f(a+ th) est dérivable en
0. Dans ce cas, on appelle alors dérivée de f en a suivant le vecteur h le vecteur limite donné par :

Dhf(a) = lim
t→0

f(a+ th)− f(a)

t

• Si de plus, (e1, . . . , ep) désigne une base de E, alors sous réserve d’existence, on appelle j-ème dérivée partielle en a de
f la dérivée suivant le vecteur ej et ainsi, on note :

Djf(a) ou
∂f

∂xj
(a) = lim

t→0

f(a+ tej)− f(a)

t

Remarques

1. Concrètement, ce dernier taux d’accroissement peut, à l’aide de la base donnée, se réécrire :

f(a+ tej)− f(a)

t
=
f(a1, . . . , aj + t, . . . , an)− f(a1, . . . , an)

t

et ainsi, pour obtenir la dérivée partielle suivant ej , il nous suffira de calculer la dérivée d’une fonction par rapport à
sa j-ème variable, en fixant les autres variables. D’ailleurs, on peut aussi obtenir un développement limité suivant la
direction ej :

f(a+ tej) = f(a) + t.
∂f

∂xj
(a) + o(t)

2. Si on reprend les notations du chapitre sur les fonctions vectorielles, alors la fonction vectorielle φ : t 7−→ f(a + th)
peut se décomposer de sorte que, dans F on a :

f(a+ th) =

n∑
k=1

fk(a+ th)e′k avec fk : E −→ R les applications composantes, (e′k) une base de F

En particulier, f admet des dérivées en a suivant le vecteur h si et seulement si les applications composantes fk
admettent des dérivées suivant le vecteur h et on a :

Dhf(a) = Dhf1(a)e′1 + . . .+Dhfn(a)e′n

Par conséquent, déterminer la dérivée partielle d’une fonction reviendra ici à déterminer les dérivées partielles pour
chacune des applications composantes.

Exemple 2 Les questions suivantes sont indépendantes.

1. On considère l’application f : R2 −→ R définie par f(x, y) = arctan(xy), et on note (e1, e2) la base canonique de R2. Justifier
que f possède des dérivées partielles suivant e1 et e2, puis donner l’expression de :

D1f(x, y) =
∂f

∂x
(x, y) et D2f(x, y) =

∂f

∂y
(x, y)

2. On définit l’application F : R2 −→ R2 par :

F (x, y) = (arctan(xy), ex+y)

et on note (e1, e2) la base canonique de R2. Justifier que F possède des dérivées partielles suivant e1 et e2, puis donner
l’expression de :

D1F (x, y) et D2F (x, y)

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , a ∈ U . On suppose de plus
que f est différentiable en a, alors :

1. f admet au point a une dérivée suivant tout vecteur h ∈ E et on a :

Dhf(a) = dfa(h)

2. en notant encore (e1, . . . , ep) une base de E, on peut exprimer la différentielle de f en a de sorte que :

dfa(h) =

p∑
i=1

hidfa(ei) =

p∑
i=1

hi
∂f

∂xi
(a)

Théorème 8 (expression de l’application différentielle).
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I Pour le premier point, il suffit de revenir au taux d’accroissement et d’utiliser la différentiabilité. Pour le second point, on
décompose h dans la base donnée et on conclut par linéarité.

Remarque Pour une fonction différentiable en a, on peut donc toujours calculer ses dérivées partielles en a, mais attention
la réciproque est fausse. En effet, il existe des fonctions pour lesquelles les dérivées partielles existent, sans pour autant que
celles-ci soient différentiables : on essaiera donc de retenir le contre-exemple suivant.

Exemple 3 On considère la fonction f : R2 −→ R définie par :

f(x, y) =


xy

x2 + y2
, si (x, y) 6= 0R2

0, sinon

1. (a) On note O(0, 0). Montrer que f possède des dérivées partielles en O, puis préciser les valeurs de
∂f

∂x
(0, 0) et

∂f

∂y
(0, 0).

(b) De la même façon, justifier que f admet des dérivées partielles en tout point (x, y) 6= 0R2 , puis donner l’expression de :

∂f

∂x
(x, y) et

∂f

∂y
(x, y)

2. Etablir alors que f n’est pas continue en 0. Que peut-on en déduire ?

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F , (e1, . . . , ep) une base de E.
On suppose de plus que : {

f possède des dérivées partielles en tout point de U

toutes les dérivées partielles sont continues sur U

alors f est nécessairement différentiable sur U et on a encore :

dfa(h) =

p∑
i=1

hi
∂f

∂xi
(a)

Théorème 9 (condition suffisante de différentiabilité).

I On revient à l’étude de la différence f(a+ h)− f(a) et on utilise la dérivabilité de f suivant les vecteurs e1, . . . , ep.

Pour cela, fixons a ∈ U et h =
∑p

i=1 hiei, alors la dérivabilité suivant la direction ep se réécrit quand h→ 0 :

f(a+ h) = f((a+

p−1∑
i=1

hiei) + hpep) = f(a+

p−1∑
i=1

hiei) + hp
∂f

∂xp
(a+

p−1∑
i=1

hiei) + o(hp)︸ ︷︷ ︸
=o(‖h‖∞)

De plus, les dérivées partielles étant continues en a, on a :

∂f

∂xp
(a+

p−1∑
i=1

hiei) −→
h→0

∂f

∂xp
(a)

et ainsi,

f(a+ h) = f((a+

p−1∑
i=1

hiei) + hpep) = f(a+

p−1∑
i=1

hiei) + hp
∂f

∂xp
(a) + o(‖h‖∞)

En itérant le procédé, on obtient le développement limité :

f(a+ h) = f(a) +

p∑
i=1

hi
∂f

∂xi
(a) + o(‖h‖∞)

Posons alors dfa : h 7−→
∑p

i=1 hi
∂f

∂xi
(a), alors on vérifie que dfa est linéaire et ainsi f est différentiable en a et :

dfa(h) =

p∑
i=1

hi
∂f

∂xi
(a)

Définition Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F . On dit alors que f
est de classe C1 sur U si elle vérifie l’une de ces deux conditions équivalentes :

• f admet des dérivées continues sur U suivant tout vecteur h ∈ E,

• f admet des dérivées partielles continues sur U suivant une base de E.
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Remarques

1. Pour vérifier qu’une fonction donnée est différentiable sur un ouvert, on préfèrera ainsi procéder en deux temps plutôt
que de revenir à la différence f(a+ h)− f(a) :{

on vérifie que f possède des dérivées partielles en chacune de ses variables

on établit alors que celles-ci sont bien continues sur U

et ainsi, la fonction sera C1 sur U et donc différentiable.

2. De plus, si f est de classe C1 sur U , on en déduit que f est différentiable sur U et donc, on retrouve qu’elle est aussi
continue sur U : on a naturellement C1 ⇒ C0.

Exemple 4 On se place dans Mp(R) muni de sa base canonique et on considère l’application det :Mp(R) −→ R défini par :

det : M 7−→ det(M)

1. Soit j ∈ J1, pK. Justifier que pour tout M ∈ Mp(R), det(M) =
∑p

k=1(−1)k+j∆kjmkj , où ∆kj désigne le mineur d’indice
(k, j).

2. Déterminer Di,jdet(M) la dérivée partielle d’indice (i, j) du déterminant au point M , c’est à dire la dérivée en M suivant
la matrice élémentaire Eij .

3. Montrer alors que l’application det est différentiable sur Mp(R) et que pour tout H ∈Mp(R),

d detM (H) =

p∑
i=1

p∑
j=1

Hij(−1)i+j∆ij = tr(C(M)TH)

En particulier, on pourra retenir cette approximation du déterminant au voisinage de M , puisque par définition de la
différentiabilité, on a toujours :

det(M +H) = det(M) + tr(C(M)TH) + o(‖H‖)

2.2 Matrice jacobienne et opérations sur les fonctions de classe C1

Définition Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F . On note (e1, . . . , ep)
une base de E et (e′1, . . . , e

′
n) une base de F et ainsi, on a pour tout x = x1e1 + . . .+ xpep ∈ E,

f : (x1, . . . , xp)︸ ︷︷ ︸
=x

7−→ (f1(x1, . . . , xp), . . . , fn(x1, . . . , xp))

avec fk les applications composantes associées. Si de plus, f est différentiable, alors on appelle matrice jacobienne de f en x
la matrice de l’application différentielle dfx notée Jfx et définie par :

Jfx =



∂f1
∂x1

(x)
∂f1
∂x2

(x) . . .
∂f1
∂xp

(x)

∂f2
∂x1

(x)
∂f2
∂x2

(x) . . .
∂f2
∂xp

(x)

...
...

...
∂fn
∂x1

(x)
∂fn
∂x2

(x) . . .
∂fn
∂xp

(x)


Et ainsi, dans chaque colonne, on retrouve les composantes du vecteur Djf(x) =

∂f

∂xj
(x) = dfa(ej).

Remarque La différentielle en un point étant une application linéaire de E dans F , on récupère alors l’image de tout vecteur
h à l’aide de la matrice jacobienne :

dfa(h) = Jfa.h

en identifiant ici h et la matrice colonne de ses composantes.

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F qu’on suppose de classe C1

sur U . On note (e1, . . . , ep) une base de E et (e′1, . . . , e
′
n) une base de F , alors f est différentiable en tout point a ∈ U et on

peut écrire plus généralement :

f(a+ h) = f(a) + dfa(h) + o(‖h‖)⇔ f(a+ h) = f(a) + Jfa.h+ o(‖h‖)

Corollaire 10 (immédiat).
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Remarque Autrement dit, toutes les opérations sur les fonctions différentiables se ramènent aussi à des opérations matricielles
sur les matrices jacobiennes et on en déduit les résultats suivants.

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f, g : U ⊂ E −→ F qu’on suppose de classe C1

sur U . Alors, pour tout λ ∈ R, λf + g est encore de classe C1 et pour tout point a ∈ U :

d(λf + g)a(h) = λdfa(h) + dga(h)⇔ J(λf + g)a = λJfa + Jga

⇔ ∀ j ∈ J1, pK,
∂(λf + g)

∂xj
(a) = λ

∂f

∂xj
(a) +

∂g

∂xj
(a)

Propriété 11 (combinaison linéaire de fonctions de classe C1).

Soient E,F,G des espaces vectoriels normés de dimension finie, et considérons f : U ⊂ E −→ F , g : V ⊂ F −→ G, f(U) ⊂ V .
On suppose de plus que f et g sont de classe C1, alors g ◦ f est encore de classe C1 et pour tout point a ∈ U :

d(g ◦ f)a(h) = dgf(a) ◦ dfa(h)⇔ J(g ◦ f)a = Jgf(a) × Jfa

Et de cette dernière égalité, on en déduit un principe de dérivation très utile pour les dérivées partielles :

⇔ ∀ j ∈ J1, pK,
∂(g ◦ f)

∂xj
(a) =

n∑
k=1

∂g

∂xk
(f(a))

∂fk
∂xj

(a)

Propriété 12 (composée de deux fonctions de classe C1).

Remarque Cette dernière propriété est aussi appelée ”règle de la châıne”, autrement dit pour obtenir la j-ème dérivée
partielle de g ◦ f , on va chercher la dérivée partielle correspondante dans toutes les composantes de g ◦ f .

Concrètement, si g : (x, y) 7−→ g(x, y) désigne une application de classe C1 sur R2 à valeurs dans R, alors on peut définir le
changement de variable :

F : (r, θ) ∈ R+ × R 7−→ g(r cos(θ), r sin(θ))

et ainsi, F est encore de classe C1 et on a :

•
∂F

∂r
(r, θ) =

∂g

∂x
(r cos(θ), r sin(θ)). cos(θ) +

∂g

∂y
(r cos(θ), r sin(θ)). sin(θ)

•
∂F

∂θ
(r, θ) =

∂g

∂x
(r cos(θ), r sin(θ)).− r sin(θ) +

∂g

∂y
(r cos(θ), r sin(θ)).r cos(θ)

Exemple 5 On définit deux fonctions :{
la fonction f de R2 dans R par f(x, y) = sin(x2 − y2)

la fonction g de R2 dans R2 par g(x, y) = (x+ y, x− y)

1. Justifier que les fonctions f et g sont différentiables en tout vecteur (x, y) ∈ R2 et écrire la matrice jacobienne de f puis de
g en (x, y).

2. Pour tout (x, y) ∈ R2, déterminer l’image d’un vecteur (u, v) ∈ R2 par l’application linéaire d(f ◦ g)(x, y) en utilisant les
deux méthodes suivantes :

(a) en calculant f ◦ g ;

(b) en utilisant le produit de deux matrices jacobiennes.

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F qu’on suppose de classe C1

sur U . On note (e1, . . . , ep) une base de E et on suppose que U est un ouvert convexe de sorte que pour tout (a, b) ∈ U2 et
pour tout t ∈ [0, 1],

a+ t(b− a) ∈ U

Dans ce cas, f est constante sur U si et seulement si toutes ses dérivées partielles sont nulles.

Théorème 13 (caractérisation des fonctions constantes).

www.cpgemp-troyes.fr 7/13

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 13
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I Dans le sens direct, c’est immédiat puisque le taux d’accroissement est nul. Dans le sens réciproque, on montre que
f(a) = f(b) en utilisant la fonction d’une variable réelle φ : t 7−→ f(a + t(b − a)) : on pourra faire appel à la règle de la
châıne pour obtenir φ′(t) = 0.

Remarque On retrouve ici une généralisation d’un résultat très pratique sur les fonctions d’une variable réelle, et ainsi on
retiendra qu’une telle fonction est constante sur un ouvert convexe si et seulement si sa différentielle est nulle.
D’ailleurs, on admet que ce résultat peut être étendu à toute partie connexe par arcs.

2.3 Dérivées partielles d’ordre supérieur

Définition Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F . On dit alors que f
est de classe C2 sur U si elle vérifie l’une de ces deux conditions équivalentes :

• f admet des dérivées de classe C1 sur U suivant tout vecteur h ∈ E,

• f admet des dérivées partielles de classe C1 sur U suivant toute base de E.

De la même façon, on peut généraliser cette définition et ainsi, f est dite de classe Ck sur U si elle vérifie l’une de ces deux
conditions équivalentes :

• f admet des dérivées de classe Ck−1 sur U suivant tout vecteur h ∈ E,

• f admet des dérivées partielles de classe Ck−1 sur U suivant toute base de E.

Remarque En notant (e1, . . . , ep) une base de E, on peut définir les dérivées partielles successives et par exemple, pour tout
(i, j) ∈ J1, pK :

DiDjfa = Di(Djfa) et D2
i fa = Di(Difa)

ce qui peut aussi s’écrire :
∂f

∂xi∂xj
(a) =

∂

∂xi
(
∂f

∂xj
)(a) et

∂2f

∂x2i
(a) =

∂

∂xi
(
∂f

∂xi
)(a)

Soient E,F deux espaces vectoriels normés de dimension finie et considérons f : U ⊂ E −→ F qu’on suppose de classe C2

sur U . On note (e1, . . . , ep) une base de E et dans ce cas, on admet que pour tout (i, j) ∈ J1, pK et pour tout point a ∈ U ,

DiDjfa = DjDifa c’est à dire que les dérivées partielles vérifient :
∂f

∂xi∂xj
(a) =

∂f

∂xj∂xi
(a)

Théorème 14 (de Schwarz).

Remarque Ce théorème est admis pour les fonctions de classe C2 et il se généralise, mais ce dernier résultat n’est pas du
tout au programme de MP : on pourra quand même retenir que pour une fonction de classe Cn, l’ordre dans lequel on calcule
les dérivées partielles n’importe pas.

Exemple 6 On considère la fonction f : R2 −→ R définie par :

f(x, y) =

xy
x2 − y2

x2 + y2
, si (x, y) 6= 0R2

0, sinon

1. (a) On note O(0, 0). Montrer que f possède des dérivées partielles en O, puis préciser les valeurs de
∂f

∂x
(0, 0) et

∂f

∂y
(0, 0).

(b) De la même façon, justifier que f admet des dérivées partielles en tout point (x, y) 6= 0R2 , puis donner l’expression de :

∂f

∂x
(x, y) et

∂f

∂y
(x, y)

(c) Etablir que f est de classe C1 sur R2.

2. Montrer alors que f n’est pas de classe C2 sur R2.

3 Cas particulier des champs scalaires

Dans cette dernière partie, on se place dans le cas particulier des champs scalaires, c’est à dire que les fonctions étudiées
seront toujours définies sur un ouvert U d’une espace vectoriel normé E de dimension finie, mais elles seront toutes à valeurs
dans R. De plus, on munit E d’une structure euclidienne classique.
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3.1 Définition du gradient et interprétation géométrique

Définition Soit E un espace vectoriel euclidien et considérons f : U ⊂ E −→ R qu’on suppose différentiable sur U .
Alors, pour tout point a ∈ U , l’application différentielle dfa est une forme linéaire su E, et d’après le théorème de représentation
de Riesz, il existe donc un unique vecteur ∇f(a) ∈ E tel que :

∀ h ∈ E, dfa(h) = < ∇f(a), h >

Cet unique vecteur est appelé le gradient de f en a et sera noté ∇f(a) ou ~gradf(a) de sorte que la différentiabilité de f nous
donne :

f(a+ h) = f(a)+ < ∇f(a), h > +o(‖h‖)

Soit E un espace vectoriel euclidien et considérons f : U ⊂ E −→ R qu’on suppose différentiable sur U . En notant (e1, . . . , ep)
une base orthonormée de E, on a donc pour tout point a ∈ U :

∇f(a) =

p∑
i=1

< ∇f(a), ei > ei =

p∑
i=1

∂f

∂xi
(a)ei

et ainsi, les composantes du gradient de f en a ne sont rien d’autres que les dérivées partielles de f en a.

Propriété 15 (expression du gradient en base orthonormée).

I C’est immédiat : on utilise la décomposition d’un vecteur en BON.

Remarques

1. On rappelle que l’inégalité de Cauchy-Schwarz nous donne pour tout vecteur (x, y) ∈ E2, | < x, y > | ≤ ‖x‖2 ‖y‖2 et
ainsi, on a l’encadrement suivant pour tout (a, h) ∈ U2 :

−‖h‖2 ‖∇f(a)‖2 ≤ < ∇f(a), h >︸ ︷︷ ︸
=dfa(h)

≤ ‖h‖2 ‖∇f(a)‖2

En fixant a ∈ U , et en considérant la différentielle comme une approximation linéaire de l’accroissement f(a+h)−f(a),
on en déduit que :

• l’accroissement de f est maximale, là où la fonction crôıt le plus vite, lorsque h est colinéaire de même sens que
le gradient en a,

• l’accroissement de f est minimale, là où la fonction décrôıt le plus vite, lorsque h est colinéaire de sens contraire
avec le gradient en a,

• l’accroissement de f est nul lorsque h est orthogonal au gradient en a.

En particulier, le gradient d’un champ scalaire rend compte géométriquement des variations de ce champ et il est
toujours tourné dans la direction des accroissements les plus grands, et orthogonal aux lignes de niveau.

2. Le calcul du gradient en BON nous permet de récupérer des formules de dérivation pratiques, et on pourra utiliser par
exemple les relations suivantes :

∇(λf + g) = λ∇(f) +∇(g)

∇(fg) = ∇(f)g + f∇(g)

∇(φ ◦ f) = (φ′ ◦ f)∇(f)

∇(1/f) = −∇(f)/f2

3.2 Formule de Taylor-Young et application à la recherche d’extremum

Définition Soit E un espace vectoriel euclidien et considérons f : U ⊂ E −→ R,a ∈ U .

• On dit que f possède un maximum local en a s’il existe r > 0 tel que pour tout x ∈ B(a, r), f(x) ≤ f(a).

• On dit que f possède un minimum local en a s’il existe r > 0 tel que pour tout x ∈ B(a, r), f(x) ≥ f(a).

Plus généralement, on parle d’extremum local en a lorsque f possède un minimum ou un maximum au voisinage de a.

D’ailleurs,

• on dit aussi que f possède un maximum absolu ou maximum global en a si pour tout x ∈ U , f(x) ≤ f(a).

• on dit aussi que f possède un minimum absolu ou minimum global en a si pour tout x ∈ U , f(x) ≥ f(a).
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Soit E un espace vectoriel euclidien et considérons f : U ⊂ E −→ R qu’on suppose différentiable sur U , a ∈ U .
Si de plus, f possède un extremum local en a, alors nécessairement :

dfa = 0

On dit que a désigne un point critique et en ce point, le gradient associé en a est nul et dans une base donnée, toutes les
dérivées partielles en a sont nulles.

Propriété 16 (condition nécessaire d’extremum).

I On introduit encore la fonction t 7−→ f(a + th) et on invoque la CN d’extremum pour les fonctions d’une variable réelle
en un point intérieur.

Remarques

1. Attention, il ne s’agit là que d’une condition nécessaire. Par exemple, on pourra considérer la fonction f : (x, y) 7−→
x4 − y4 pour laquelle on montre que (0, 0) est le seul point critique et pourtant, au voisinage de O(0, 0), la fonction
change de signe ne permettant pas d’avoir un extremum local : on dit ici qu’il s’agit d’un point col ou d’un point
selle.

2. Parfois, on pourra quand même garantir en amont l’existence d’un tel extremum. Pour cela, on rappelle que :

• toute fonction continue sur une partie compacte et à valeurs réelles est bornée et atteint ses bornes. Dans ce cas,
il faudra alors séparer le travail sur l’intérieur du compact (là où s’applique la condition nécessaire d’extremum)
et l’étude sur le bord...

• si f est définie sur E et si f(x) −→ ±∞ quand ‖x‖ → +∞, alors on montre que f possède un maximum ou
minimum absolu : il suffit de traduire la limite avec M = f(0E) et d’appliquer le résultat précédent à Bf (0E , A).

On fera bien attention : les points critiques ne nous donnent pas a priori des extremas... une fois identifiés, il s’agira donc d’étudier
le signe de la différence f(x)− f(a).

Exemple 7

1. On considère la fonction f définie sur R2 par f(x, y) = xy. Déterminer les points critiques éventuels et montrer qu’elle
n’admet pas d’extremum local.

2. On considère la fonction f définie sur R2 par f(x, y) = x2 + y2 + 2x− 2y + 4. Déterminer les points critiques éventuels et
montrer qu’elle admet un extremum global.
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Soit E un espace vectoriel euclidien et considérons f : U ⊂ E −→ R, a ∈ U . On note (e1, . . . , ep) une base de E.

1. Si f est de classe C1 sur U , alors on rappelle que f est différentiable et on a pour tout point a ∈ U :

f(a+ h) = f(a) +

p∑
i=1

hi
∂f

∂xi
(a) + o(‖h‖)

2. Si f est de classe C2 sur U , alors on admet que pour tout point a ∈ U :

f(a+ h) = f(a) +

p∑
i=1

hi
∂f

∂xi
(a) +

1

2

p∑
i=1

p∑
j=1

hihj
∂2f

∂xixj
+ o(‖h‖2)

Théorème 17 (formule de Taylor-Young).

Remarque Cette formule de Taylor-Young est admise, mais elle provient de la formule de Taylor avec reste intégral appliquée
à la fonction vectorielle t 7−→ f(a+ th) sur [0, 1]... le calcul est laborieux d’autant qu’il n’est pas toujours simple de justifier
rigoureusement que le reste intégral est négligeable devant ‖h‖2.

Définition Soit E un espace vectoriel normé de dimension finie et considérons f : U ⊂ E −→ R. On note (e1, . . . , ep) une base
de E et ainsi, on a pour tout x = x1e1 + . . . + xpep ∈ E, f : (x1, . . . , xp)︸ ︷︷ ︸

=x

7−→ f(x1, . . . , xp). Si de plus, f est de classe C2, alors

on définit encore :

• la matrice jacobienne appartenant à M1p(R), et constituée des dérivées partielles premières :

Jfx =

(
∂f

∂x1
(x) . . .

∂f

∂xp
(x)

)
• la matrice hessienne appartenant à Mp(R), et constituée des dérivées partielles secondes par :

Hfx =



∂2f

∂x21
(x) . . .

∂2f

∂x1∂xp
(x)

...
∂2f

∂xi∂xj
(x)

...

∂2f

∂xp∂x1
(x) . . .

∂2f

∂x2p
(x)


Remarques

1. Bien entendu, si f est de classe C2 sur U , alors le théorème de Schwarz nous donne :

∀(i, j) ∈ J1, pK2,
∂f

∂xi∂xj
(a) =

∂f

∂xj∂xi
(a)

et ainsi, la matrice hessienne est symétrique réelle et ses valeurs propres sont réelles.

2. On peut alors réécrire la formule de Taylor-Young à l’ordre 2 de sorte que :

f(a+ h) = f(a) + Jfa.h+
1

2
hT .Hfa.h︸ ︷︷ ︸

=Q(h)

+ o(‖h‖2)

En particulier, si a est un point critique, alors dfa = 0 et ainsi, au voisinage de a, le signe de f(a + h) − f(a) dépend
directement du signe de l’expression quadratique Q(h).
Si on invoque le théorème spectral, alors il existe P ∈ On(R) tel que Q(h) = hT .PDPT .h = (PTh)TD (PTh).
Et en notant Y = PTh ∈Mn1(R), on a finalement :

Q(h) =

n∑
i=1

λiy
2
i

C’est pour cela que le spectre de la matrice hessienne en un point est important : il peut, dans certains cas, nous
donner des informations supplémentaires sur un point critique.
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Soit E un espace vectoriel normé de dimension finie et considérons f : U ⊂ E −→ R qu’on suppose de classe C2. On note
(e1, . . . , ep) une base de E et a un point critique. Alors,

1. Si la matrice hessienne Hfa ∈ S++
n (R), alors au voisinage de a, f(a + h) − f(a) ≥ 0 et ainsi, f atteint un minimum

local en a.

2. Si la matrice hessienne Hfa ∈ S−−n (R), alors au voisinage de a, f(a + h) − f(a) ≤ 0 et ainsi, f atteint un maximum
local en a.

3. Si la matrice hessienne possède des valeurs propres de signes dictincts, alors au voisinage de a, f(a + h) − f(a) peut
changer de signe et il y a un point selle en a.

Corollaire 18 (étude locale en un point critique).

Remarques

1. Dans tous les autres cas, on fera attention à ne pas aller trop vite : en effet, ces ”dévelopements limités vectoriels”
nous donnent des informations dans les différentes directions autour du point a, mais si une valeur propre est nulle, on
perd l’information dans une direction et il faudrait alors augmenter l’ordre du développement limité pour conclure...
On veillera donc à affiner l’étude autour du point considéré.

2. En dimension 2, on ne sera pas obligé de déterminer les valeurs propres pour obtenir des informations sur leurs signes
et on pourra se contenter d’étudier la trace et le déterminant de la matrice hessienne.

3. De la même façon, on n’a ici que des informations locales et on attendra d’autres arguments pour justifier qu’il s’agit
d’un extremum global.

Exemple 8 Pour chacune de ces fonctions, déterminer les extremas locaux, puis étudier s’il s’agit d’extremas globaux :

1. f : (x, y) ∈ R2 7−→ x2 + xy + y2 + 2x+ 3y

2. f : (x, y) ∈ R2 7−→ x4 + y4 − 4xy

www.cpgemp-troyes.fr 12/13

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 13
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3.3 Problème des extremas liés

Dans certains cas, on ne travaille pas sur une partie ouverte, mais sur des parties définies par une ou plusieurs équations
reliant de fait les variables de notre fonction à plusieurs variables. Il existe alors une méthode très pratique pour identifier
les points en lesquels se cachent un extremum : c’est le théorème des extremas liés, admis en MP.

Soit E un espace vectoriel euclidien et considérons f, g1, . . . , gp des fonctions qu’on suppose de classe C1 sur un ouvert U ⊂ E
à valeurs réelles et on définit :

X = {x ∈ U, g1(x) = . . . = gp(x) = 0}

Si f|X admet un extremum en a et si les différentielles dg1,a, . . . , dgp,a sont linéairement indépendantes, alors il existe des
réels λ1, . . . , λp tels que :

df|X,a =

p∑
i=1

λidgi,a

Théorème 19 (des extremas liés).

Remarques

1. La partie X n’étant pas ouverte, on ne peut pas invoquer la condition nécessaire d’extremum. Par contre, ce résultat
est très efficace et les coefficients λ1, . . . , λp qui interviennent seront appelés multiplicateurs de Lagrange.

2. Cette méthode est une condition nécessaire : elle nous permettra encore une fois d’identifier des points en lesquels il
peut y avoir un extremum, mais elle ne garantit pas la présence d’un maximum ou d’un minimum. Généralement, on
essaiera de justifier leur existence autrement, avant de déterminer ces extremas.

Exemple 9 Les questions suivantes sont indépendantes.

1. Soit f : (x, y) ∈ R2 7−→ xy, on étudie ses extremas sur le cercle unité S = {(x, y) ∈ R2, x2 + y2 − 1 = 0}.

(a) Justifier que f possède un maximum et un minimum sur S.

(b) En utilisant le théorème des extremas liés, retrouver alors les extremas de f sur S.

2. Soit f : (x, y, z) ∈ R3 7−→ x+ y + z, on étudie ses extremas sur E = {(x, y, z) ∈ R3, x2

2
+ y2

4
+ z2

6
− 1 = 0}.

(a) Justifier que E désigne une partie compacte de R3. En déduire que f possède un maximum et un minimum sur E .

(b) En utilisant le théorème des extremas liés, retrouver alors les extremas de f sur E .

3. Soit f : (x, y, z) ∈ R3 7−→ x+ y + z, on étudie ses extremas sur E ′ = {(x, y, z) ∈ R3, −x2

2
+ y2

4
+ z2

6
− 1 = 0}.

(a) En utilisant le théorème des extremas liés, déterminer les points en lesquels f possède un extremum éventuel sur E ′.
(b) Considérons un point courant Mt = (t, 2, t

√
3) ∈ E ′, avec t ∈ R. Montrer que f ne possède pas d’extremas sur E ′.
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