Chapitre 13

Eléments de calcul différentiel

On poursuit I’étude des fonctions vectorielles avec ici les fonctions d’une variable vec-
torielle a valeurs vectorielles. On revient notamment sur la notion de différentiabilité
qui nous permettra d’obtenir une approximation linéaire de la différence f(a + h) —
f(a)... cela sera trés utile dans ’étude des champs scalaires, car on pourra exhiber,
a laide d’un développement limité vectoriel, des conditions pour l’existence d’un ex-

tremum.
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Pour aller plus loin

Ce chapitre n’est pas facile, que ce soit en raison des notations ou du travail sur les vecteurs : il nécessite donc beaucoup
de rigueur dans la compréhension des objets. Malgré tout, on définit ici une notion utile : la différentiabilité et on essaiera
de retenir quelques exemples d’application tres classiques pour les matrices, avec notamment une autre preuve du théoreme
spectral.
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1 Notion de fonction différentiable

Dans tout ce chapitre, on travaille dans des espaces vectoriels réels, normés et de dimension finie, et les fonctions manipulées
seront toutes définies sur un ouvert U inclus dans un espace vectoriel normé E de sorte que :

a€U=3e>0, Bla,e) CU

et ainsi, au voisinage de a, on pourra toujours considérer h tel que a +h € U.

1.1 Existence et unicité de la différentielle

Définition Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f: U C K — F,a € U.

e On dit que f est différentiable en a s’il existe une application linéaire L, € L(E, F) telle que :

Fla+h) = f(a) + La(t) + o ([h])

e Plus généralement, on dit que f est différentiable sur U si f est différentiable en tout point de U.

Remarques
1. Vérifier que f est différentiable en un point revient & montrer qu’on peut donner une approximation linéaire de la
différence f(a + h) — f(a) au voisinage de a.

2. D’ailleurs, pour une fonction vectorielle d’une variable réelle, cette notion de différentiabilité équivaut a la dérivabilité.
En effet, si f: I — F, on rappelle qu’elle est dérivable en a si et seulement si :

fla+h) = f(a) + h.f'(a) + o(h)

et dans ce cas, on peut dire que f est différentiable en a avec L,(h) = h.f'(a). La réciproque est immédiate puisque la
linéarité de L nous donne un développement limité de f en a, et donc sa dérivabilité :

fla+h) = f(a) + La(h) + o(|h]) = f(a+ h) = f(a) + h.La(1) + o(h)
3. Malheureusement, dans le cas plus général des fonctions d’une variable vectorielle, on ne pourra pas toujours parler de

dérivabilité (car le taux d’accroissement peut ne pas avoir de sens) et on lui préférera la notion de différentiabilité
. c’est 1a une des difficultés de ce chapitre.

—{Propriété 1 (unicité de la différentielle). )

Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f : U C E — F, a € U. On suppose de plus
que f est différentiable en a. Alors, il existe une unique application linéaire L, € L(E, F') telle que :

fla+h) = f(a) + La(h) + o(|[])

Cette application désigne 'application linéaire tangente ou plus simplement, la différentielle de f en a qu’on notera

dfa(h).

» L’existence est immédiate. Pour l'unicité, on raisonne par U'absurde de sorte que dans Lo(E,F), a = |||[L1 — La||| # 0 et
on se raméne a la différence L1(h) — La(h) = o(||h]]) afin d’obtenir une contradiction sur la norme subordonnée.

Propriété 2 (une fonction différentiable est continue).]

Soient F, F' deux espaces vectoriels normés de dimension finie et considérons f: U C E — F, a € U. On suppose de plus
que f est différentiable en a. Alors, f est continue en a.

» On revient a la définition et on montre par continuité de la différentielle que f(a + h) — f(a) quand h — 0.

{Propriété 3 (cas particulier des applications linéaires et bilinéaires).}

Soient F1, Ea, F' des espaces vectoriels normés de dimension finie.
1. Si L désigne une application linéaire de F; dans F', alors L est différentiable sur £ et on a en tout point a € E :
dLq : h— L(h)
2. Si B désigne une application bilinéaire de E1 x F> dans F, alors B est différentiable sur E1 X E2 et on a en tout point

a= (a1,a2) € E1 X Ey :
dBa:h>—>B(h1,a2)+B(a1,h2)
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» On revient a chaque fois la différence en a+h et a, et on pensera a reconnaitre une partie linéaire et une partie négligeable
en o(||h]|), d’ailleurs en dimension finie on pourra invoquer la caractérisation des applications linéaires continues.

Exemple 1 Dans cet exercice, |.|| désigne une norme d’algebre sur M, (R), c’est-a-dire une norme vérifiant pour tout couple
(A, B) de matrices de M, (R), ||AB| < ||A||||B]]-

1
1. Démontrer que pour toute matrice A de M, (R), la série Z EAk converge. On notera e sa somme.

k>0

2. Montrer que I'application A —s e est continue sur M., (R).

+oo
1 1
3. Si H € M, (R) est une matrice non nulle de la boule de centre 0 et de rayon r > 0, déterminer la limite de THI E EH k
k=2
lorsque H tend vers 0.

4. En déduire que Papplication A — e est différentiable en la matrice 0. On précisera sa différentielle en 0.

1.2 Opérations sur les fonctions différentiables

{Propriété 4 (combinaison linéaire de fonctions diﬂérentiables).}

Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f,g: U C E — F, a € U. On suppose de plus
que f, g sont différentiables en a. Alors, pour tout A € R, A\f + g est encore différentiable en a et :

dAf 4+ g)a : h — Adfa(h) + dga(h)

» Comme pour les développements limités, on revient & la définition en o(||hl]).

{Propriété 5 (composée d’une application linéaire et d’une fonction différentiable).]

Soit f: U C E — F, a € U et considérons L : F — G une application linéaire. On suppose de plus que f est différentiable
en a, alors L o f est différentiable en a et on peut encore montrer que :

d(Lo f)a: h—> Lodfa(h)

» Comme pour les développements limités, on revient a la définition en o(||hl]).

{Propriété 6 (composée d’une application bilinéaire et de deux fonctions différentiables).]

Soient f1 : U C E — Fi, foa: U C E — F3, a € U et considérons B : F} X F» — G une application bilinéaire. On suppose
de plus que fi, f2 sont différentiables en a, alors B(f1, f2) est différentiable en a et on peut encore montrer que :

dB(f1, f2)a : h — B(d(f1)a(h), f2(a)) + B(f1(a), d(f2)a(h))

» Comme pour les développements limités, on revient & la définition en o(||h]]).

Remarque Ce dernier résultat se généralise et on pourra méme décrire la différentielle d’une application multi-linéaire.
Autrement dit, en notant M une application n-linéaire et si fi,...,fn : U C E — F; sont différentiables en a, alors
M(f1,..., fn) est différentiable en a et on a :

AM(f1,. .. fa)a =D _ M(f1,. . d(fi)a -, fn)

k=1

{Propriété 7 (composée de deux fonctions différentiables).]

Soient F, F, G des espaces vectoriels normés de dimension finie, et considérons f : U C E — F,g:V C F — G, a € U,
f(U) C V. On suppose de plus que f est différentiable en a et g différentiale en f(a), alors g o f est encore différentiable en
aetona:

d(go fla:hvr— dgsa)odfa(h)

» On revient a la définition en o(||h||), par contre on écrira d’abord la différentiabilité de f en a, de g en f(a) avant d’aller
chercher go f(a+ h) : on pourra alors utiliser la linéarité des applications différentielles.
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2 Dérivées partielles et fonctions de classe C!

2.1 Définition et expression de la différentielle a ’aide des dérivées partielles

Définition Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f: U C E — F,a € U.

e On dit que f admet une dérivée en a suivant le vecteur h € E si la fonction vectorielle ¢ : t — f(a + th) est dérivable en
0. Dans ce cas, on appelle alors dérivée de f en a suivant le vecteur h le vecteur limite donné par :

th) —
Drf(@)  tim Tt 1) = f(a)
t—0 t
e Si de plus, (e1,...,ep) désigne une base de E, alors sous réserve d’existence, on appelle j-éme dérivée partielle en a de
f la dérivée suivant le vecteur e; et ainsi, on note :
of . flatte;) — f(a)
D, f(a) on 7 (a) = fim HEEEL =

Remarques
1. Concretement, ce dernier taux d’accroissement peut, a ’aide de la base donnée, se réécrire :
fla+te;) — f(a) _ flar,...;a;+t,...;an) — fa,...,an)
t t
et ainsi, pour obtenir la dérivée partielle suivant e;, il nous suffira de calculer la dérivée d’une fonction par rapport a
sa j-eme variable, en fixant les autres variables. D’ailleurs, on peut aussi obtenir un développement limité suivant la
direction e; :
of

fla+te;) = f(a) +t.a—$j(a) + o(t)

2. Si on reprend les notations du chapitre sur les fonctions vectorielles, alors la fonction vectorielle ¢ : t — f(a + th)
peut se décomposer de sorte que, dans F on a :

fla+th) = Z fr(a+th)ey, avec fr : E — R les applications composantes, (e},) une base de F'
k=1

En particulier, f admet des dérivées en a suivant le vecteur h si et seulement si les applications composantes fx
admettent des dérivées suivant le vecteur h et on a :

Dy f(a) = Dnfi(a)el + ...+ Dinfa(a)e,
Par conséquent, déterminer la dérivée partielle d’une fonction reviendra ici & déterminer les dérivées partielles pour
chacune des applications composantes.
Exemple 2 Les questions suivantes sont indépendantes.

1. On considere I'application f : R? — R définie par f(x,%y) = arctan(zy), et on note (e1, e2) la base canonique de R?. Justifier
que f posseéde des dérivées partielles suivant e; et ez, puis donner I’expression de :

Duf(e,1) = G (@) et Daf(e,1) = G (@)

2. On définit Papplication F : R> — R? par :
F(z,y) = (arctan(ay), ")

et on note (e1,e2) la base canonique de R?. Justifier que F' possede des dérivées partielles suivant e; et es, puis donner
I’expression de :
D1F(z,y) et D2F(2,y)

{Théoréme 8 (expression de Iapplication différentielle).]

Soient FE, F' deux espaces vectoriels normés de dimension finie et considérons f : U C E — F', a € U. On suppose de plus
que f est différentiable en a, alors :

1. f admet au point a une dérivée suivant tout vecteur h € E et on a :
Dnf(a) = dfa(h)

2. en notant encore (e1,...,ep) une base de E, on peut exprimer la différentielle de f en a de sorte que :

dfa(h) = Zhidfa(ei) = Z hi gj (a)
i=1 i=1 ‘
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» Pour le premier point, il suffit de revenir au tauz d’accroissement et d’utiliser la différentiabilité. Pour le second point, on
décompose h dans la base donnée et on conclut par linéarité.

Remarque Pour une fonction différentiable en a, on peut donc toujours calculer ses dérivées partielles en a, mais attention
la réciproque est fausse. En effet, il existe des fonctions pour lesquelles les dérivées partielles existent, sans pour autant que
celles-ci soient différentiables : on essaiera donc de retenir le contre-exemple suivant.

Exemple 3 On considére la fonction f : R? — R définie par :

xy .
5 5o Sl (w7y) # 0R2
Foy) = 7+
0, sinon
5 L . . - af af
1. (a) On note O(0,0). Montrer que f possede des dérivées partielles en O, puis préciser les valeurs de 6—(0, 0) et Jy (0,0).
i
(b) De la méme facon, justifier que f admet des dérivées partielles en tout point (z,y) # Ogz, puis donner I’expression de :
of of
r,y) et ——(,
9z DY) et 5 (@)
2. Etablir alors que f n’est pas continue en 0. Que peut-on en déduire ?
{Théoréme 9 (condition suffisante de différentiabilité).]
Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f: U C E — F, (e1,...,€ep) une base de E.
On suppose de plus que :
f posséde des dérivées partielles en tout point de U
toutes les dérivées partielles sont continues sur U
alors f est nécessairement différentiable sur U et on a encore :
17}
dfa(h Z R f
» On revient a U'étude de la différence f(a+ h) — f(a) et on utilise la dérivabilité de f suivant les vecteurs ey, ..., ep.
Pour cela, firons a € U et h = i’zl hiei, alors la dérivabilité suivant la direction e, se réécrit quand h — 0 :

p—1 p—1 p—1

fla+h)=7f quZh( + hpep) = f( quZ/l( +/1,,A (1+Z/1( o(hp)
i1=1 i=1 i1=1 ~—~—

=o(||hleo)

De plus, les dérivées partielles étant continues en a, on a :

p—1 .
of
()r,) (1+Z/1 e; “ Bz, (a)

1=1

et ainsi,
p—1 f
. ( ,
fla+h)=f (7+§}7( + hpep) = f (1+;}7( +hp‘,)“’p( a) + o(||h||so)
En itérant le procédé, on obtient le développement limité :
fla+h)= f(a +Z/1,f a) + o(||h]|eo)

1=1

Posons alors df, : h— > F h/,—(a) alors on vérifie que df, est linéaire et ainsi f est différentiable en a et :

1=1 )
Tq

- ()f
dfa(h) Zh,,)
Lq

Définition Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f : U C E — F. On dit alors que f
est de classe C! sur U si elle vérifie I'une de ces deux conditions équivalentes :

e f admet des dérivées continues sur U suivant tout vecteur h € E,

e f admet des dérivées partielles continues sur U suivant une base de F.
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Remarques

1. Pour vérifier qu'une fonction donnée est différentiable sur un ouvert, on préféerera ainsi procéder en deux temps plutot
que de revenir & la différence f(a + h) — f(a) :

on vérifie que f possede des dérivées partielles en chacune de ses variables
on établit alors que celles-ci sont bien continues sur U

et ainsi, la fonction sera C' sur U et donc différentiable.

2. De plus, si f est de classe C! sur U, on en déduit que f est différentiable sur U et donc, on retrouve qu’elle est aussi
continue sur U : on a naturellement C' = C°.

Exemple 4 On se place dans M, (R) muni de sa base canonique et on considére ’application det : M, (R) — R défini par :
det : M —— det(M)

1. Soit j € [1,p]. Justifier que pour tout M € M,(R), det(M) = >-2_ (—=1)*t Ayymu;, ott Ay; désigne le mineur d’indice

2. Déterminer D; jdet(M) la dérivée partielle d’indice (¢, j) du déterminant au point M, c’est & dire la dérivée en M suivant
la matrice élémentaire E;;.

3. Montrer alors que I'application det est différentiable sur M, (R) et que pour tout H € M,(R),
P P o
ddetr (H) = > Hij(—=1)" Ay = tr(C(M)" H)
i=1 j=1

En particulier, on pourra retenir cette approximation du déterminant au voisinage de M, puisque par définition de la

différentiabilité, on a toujours :
det(M + H) = det(M) + tr(C(M)"H) + o(||H||)

2.2 Matrice jacobienne et opérations sur les fonctions de classe C*

Définition Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f : U C E — F. On note (e1,...,¢ep)
une base de E et (ef,...,e;,) une base de F et ainsi, on a pour tout * = z1e1 + ...+ zpe, € E,
f : (1"17" . 71:p) — (fl(il»'h...,fl'p),...,fn,(fl,...7flip))
| ———

=x

avec fi les applications composantes associées. Si de plus, f est différentiable, alors on appelle matrice jacobienne de f en =
la matrice de Iapplication différentielle df, notée J f, et définie par :

2 2 2
I = i, (z) D, () ... oz, (z)
O O O
Et ainsi, dans chaque colonne, on retrouve les composantes du vecteur D; f(z) = g—(at) = dfa.(ej).
Lj

Remarque La différentielle en un point étant une application linéaire de E dans F', on récupere alors I'image de tout vecteur

h a l’aide de la matrice jacobienne :
dfa(h) = Jfo.h

en identifiant ici h et la matrice colonne de ses composantes.

{Corollaire 10 (immédiat) ]

Soient E, F deux espaces vectoriels normés de dimension finie et considérons f : U ¢ E —s F qu’on suppose de classe C
sur U. On note (e1,...,ep) une base de E et (e,...,e),) une base de F, alors f est différentiable en tout point a € U et on
peut écrire plus généralement :

fla+h) = f(a) + dfa(h) +o([|hl]) & fla+h) = f(a) + J fa-h + o(||h])
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Remarque Autrement dit, toutes les opérations sur les fonctions différentiables se raménent aussi & des opérations matricielles
sur les matrices jacobiennes et on en déduit les résultats suivants.

{Propriété 11 (combinaison linéaire de fonctions de classe Cl).j

Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f,g: U C E — F qu’on suppose de classe C*
sur U. Alors, pour tout A € R, Af 4 g est encore de classe C' et pour tout point a € U :

d(Af + 9)a(h) = Adfa(h) + dga(h) & J(AS + 9)a = AJ fa + Jga

ic
< Vjel,pl iy a%

830]( a)

{Propriété 12 (composée de deux fonctions de classe Cl).j

Soient E, F', G des espaces vectoriels normés de dimension finie, et considérons f : U CE — F,g:VCF — G, f(U)CV.
On suppose de plus que f et g sont de classe C*, alors g o f est encore de classe C* et pour tout point a € U :

d(go fla(h) =dgya) 0 dfa(h) & J(g0 fla = Jgs(a) X J fa

Et de cette derniere égalité, on en déduit un principe de dérivation tres utile pour les dérivées partielles :

sviel SERw =3 g8 vt

Remarque Cette derniére propriété est aussi appelée "régle de la chaine”, autrement dit pour obtenir la j-éme dérivée
partielle de g o f, on va chercher la dérivée partielle correspondante dans toutes les composantes de g o f.

Concretement, si g : (x,y) — g(z,y) désigne une application de classe C' sur R? & valeurs dans R, alors on peut définir le
changement de variable :
F:(r,0) € Ry X R+— g(rcos(d),rsin(0))

et ainsi, F est encore de classe C' et on a :

oF 99 ‘ . ) 9g ) - ;
. E(r, 0) = 8—ﬂr(r cos(#),rsin(0)). cos(6) + By (rcos(0), rsin(h)). sin(0)
OF _0g . . dg .
. %( 0) = a—x(r cos(),rsin(h)). — rsin(f) + a—y(r cos(#), rsin(0)).r cos(6)

Exemple 5 On définit deux fonctions :

la fonction f de R? dans R par f(z,y) = sin(z? — y?)
la fonction g de R? dans R? par g(z,9) = (z +y,z —y)

1. Justifier que les fonctions f et g sont différentiables en tout vecteur (x,y) € R? et écrire la matrice jacobienne de f puis de
g en (z,y).

2. Pour tout (z,y) € R?, déterminer 'image d’un vecteur (u,v) € R? par I'application linéaire d(f o g)(x, ) en utilisant les
deux méthodes suivantes :

(a) en calculant fog ;

(b) en utilisant le produit de deux matrices jacobiennes.

{Théor‘eme 13 (caractérisation des fonctions constantes).]

Soient E, F deux espaces vectoriels normés de dimension finie et considérons f : U C E — F qu’on suppose de classe C*
sur U. On note (e1,...,ep) une base de E et on suppose que U est un ouvert convexe de sorte que pour tout (a,b) € U? et
pour tout ¢ € [0, 1],

a+tb—a)eU

Dans ce cas, f est constante sur U si et seulement si toutes ses dérivées partielles sont nulles.
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» Dans le sens direct, c’est immédiat puisque le tauxr d’accroissement est nul. Dans le sens réciproque, on montre que
f(a) = f(b) en utilisant la fonction d’une variable réelle ¢ : t — f(a + (b — a)) : on pourra faire appel a la régle de la
chaine pour obtenir ¢'(t) = 0.

Remarque On retrouve ici une généralisation d’un résultat trés pratique sur les fonctions d’une variable réelle, et ainsi on
retiendra qu'une telle fonction est constante sur un ouvert convexe si et seulement si sa différentielle est nulle.
D’ailleurs, on admet que ce résultat peut étre étendu a toute partie connexe par arcs.

2.3 Dérivées partielles d’ordre supérieur

Définition Soient E, F' deux espaces vectoriels normés de dimension finie et considérons f : U C E — F. On dit alors que f
est de classe C? sur U si elle vérifie 'une de ces deux conditions équivalentes :

e f admet des dérivées de classe C* sur U suivant tout vecteur h € E,

o f admet des dérivées partielles de classe C' sur U suivant toute base de F.

De la méme facon, on peut généraliser cette définition et ainsi, f est dite de classe C* sur U si elle vérifie I'une de ces deux
conditions équivalentes :

o f admet des dérivées de classe C*~! sur U suivant tout vecteur h € E,

e f admet des dérivées partielles de classe C*~! sur U suivant toute base de E.

Remarque En notant (e, ..., ep) une base de E, on peut définir les dérivées partielles successives et par exemple, pour tout
(4,7) € [1,0] :
DiD; fa = Di(Djfa) et D fo = Di(Difa)

ce qui peut aussi s’écrire :

of .. _ 0 of o°f, .0 ,0f
Dri007,; a) = axi(ach)(a) e 87?(@) = 52 (52.)(@)

{Théoréme 14 (de Schwarz).]

Soient E, F deux espaces vectoriels normés de dimension finie et considérons f : U ¢ E — F qu’on suppose de classe C?
sur U. On note (ey,...,ep) une base de E et dans ce cas, on admet que pour tout (¢,5) € [1,p] et pour tout point a € U,

of _of
8.%‘1'8.13' (CL) o 6:336331 @

D;Djfo = D;D;fq c’est a dire que les dérivées partielles vérifient :

Remarque Ce théoréme est admis pour les fonctions de classe C? et il se généralise, mais ce dernier résultat n’est pas du
tout au programme de MP : on pourra quand méme retenir que pour une fonction de classe C", ’ordre dans lequel on calcule
les dérivées partielles n’importe pas.

Exemple 6 On considére la fonction f : R? — R définie par :

22—y
F(z,y) = xym’ si (z,y) # Og2
0, sinon
1. (a) On note O(0,0). Montrer que f possede des dérivées partielles en O, puis préciser les valeurs de %(0,0) et 3—5(0,0).
(b) De la méme fagon, justifier que f admet des dérivées partielles en tout point (z,y) # Og2, puis donner I'expression de :
of of

— t —
(c) Etablir que f est de classe C* sur R

2. Montrer alors que f n’est pas de classe C? sur R?.

3 Cas particulier des champs scalaires

Dans cette derniére partie, on se place dans le cas particulier des champs scalaires, c’est & dire que les fonctions étudiées
seront toujours définies sur un ouvert U d’une espace vectoriel normé FE de dimension finie, mais elles seront toutes a valeurs
dans R. De plus, on munit £ d’une structure euclidienne classique.
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3.1 Définition du gradient et interprétation géométrique

Définition Soit F un espace vectoriel euclidien et considérons f : U C E — R qu’on suppose différentiable sur U.
Alors, pour tout point a € U, 'application différentielle df, est une forme linéaire su E, et d’apres le théoreme de représentation
de Riesz, il existe donc un unique vecteur V f(a) € E tel que :

VheE, dfa(h) =< Vi(a),h>

Cet unique vecteur est appelé le gradient de f en a et sera noté V f(a) ou gr_&d f(a) de sorte que la différentiabilité de f nous
donne :

fla+h) = fla)+ < Vf(a),h > +o(|[h]))

{Propriété 15 (expression du gradient en base orthonormée).]

Soit E un espace vectoriel euclidien et considérons f : U C E — R qu’on suppose différentiable sur U. En notant (eq,...,ep)
une base orthonormée de E, on a donc pour tout point a € U :

Vf(a)= Z <Vf(a),e; >e = Z gj; (a)e;

=1 =1

et ainsi, les composantes du gradient de f en a ne sont rien d’autres que les dérivées partielles de f en a.

» C’est immédiat : on utilise la décomposition d’un vecteur en BON.
Remarques

1. On rappelle que I'inégalité de Cauchy-Schwarz nous donne pour tout vecteur (z,y) € E2, | < z,y > | < |lz|l2 [|yll2 et
ainsi, on a l’encadrement suivant pour tout (a, h) € U?:

—lhllz[IVF(a)lla < < Vf(a),h > < [hll2[[Vf(a)]2
—_————
=dfa (h)

En fixant a € U, et en considérant la différentielle comme une approximation linéaire de accroissement f(a+h)— f(a),
on en déduit que :

e ’accroissement de f est maximale, 1a ou la fonction croit le plus vite, lorsque h est colinéaire de méme sens que
le gradient en a,

e |’accroissement de f est minimale, 1& ou la fonction décroit le plus vite, lorsque h est colinéaire de sens contraire
avec le gradient en a,

e ’accroissement de f est nul lorsque h est orthogonal au gradient en a.

En particulier, le gradient d’un champ scalaire rend compte géométriquement des variations de ce champ et il est
toujours tourné dans la direction des accroissements les plus grands, et orthogonal aux lignes de niveau.

2. Le calcul du gradient en BON nous permet de récupérer des formules de dérivation pratiques, et on pourra utiliser par
exemple les relations suivantes :

V(Af +9) =AV(f) + V(g)
V(fg)=VI(flg+ fV(g)
V(gof)=(4"0/V(S)

V(/f)=-V(NH/f?

3.2 Formule de Taylor-Young et application a la recherche d’extremum

Définition Soit F un espace vectoriel euclidien et considérons f: U C E — R,a € U.

e On dit que f posséde un maximum local en «a s'il existe r > 0 tel que pour tout z € B(a,r), f(z) < f(a).

e On dit que f posséde un minimum local en a s’il existe r > 0 tel que pour tout = € B(a,r), f(z) > f(a).
Plus généralement, on parle d’extremum local en a lorsque f posséde un minimum ou un maximum au voisinage de a.
D’ailleurs,

e on dit aussi que f posséde un maximum absolu ou maximum global en a si pour tout z € U, f(x) < f(a).

e on dit aussi que f posséde un minimum absolu ou minimum global en «a si pour tout x € U, f(z) > f(a).
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{Propriété 16 (condition nécessaire d’extremum).]

Soit E un espace vectoriel euclidien et considérons f : U C E — R qu’on suppose différentiable sur U, a € U.
Si de plus, f posseéde un extremum local en a, alors nécessairement :

dfa =0

On dit que a désigne un point critique et en ce point, le gradient associé en a est nul et dans une base donnée, toutes les
dérivées partielles en a sont nulles.

» On introduit encore la fonction t — f(a + th) et on invoque la CN d’extremum pour les fonctions d’une variable réelle
en un point intérieur.

Remarques

1. Attention, il ne s’agit 14 que d’une condition nécessaire. Par exemple, on pourra considérer la fonction f : (z,y) —
z* — y* pour laquelle on montre que (0,0) est le seul point critique et pourtant, au voisinage de O(0,0), la fonction
change de signe ne permettant pas d’avoir un extremum local : on dit ici qu’il s’agit d’un point col ou d’un point
selle.

2. Parfois, on pourra quand méme garantir en amont ’existence d’un tel extremum. Pour cela, on rappelle que :

e toute fonction continue sur une partie compacte et a valeurs réelles est bornée et atteint ses bornes. Dans ce cas,
il faudra alors séparer le travail sur l'intérieur du compact (la o s’applique la condition nécessaire d’extremum)
et I’étude sur le bord...

e si f est définie sur E et si f(z) — oo quand ||z|| — +o0, alors on montre que f posséde un maximum ou
minimum absolu : il suffit de traduire la limite avec M = f(0g) et d’appliquer le résultat précédent & By (0g, A).

On fera bien attention : les points critiques ne nous donnent pas a priori des extremas... une fois identifiés, il s’agira donc d’étudier
le signe de la différence f(z) — f(a).

Exemple 7

1. On considere la fonction f définie sur R? par f(z,y) = xy. Déterminer les points critiques éventuels et montrer qu’elle
n’admet pas d’extremum local.

2. On considere la fonction f définie sur R? par f(z,y) = 2> + y*> + 22 — 2y + 4. Déterminer les points critiques éventuels et
montrer qu’elle admet un extremum global.
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{Théor‘eme 17 (formule de Taylor—Young).]

Soit E un espace vectoriel euclidien et considérons f: U C E — R, a € U. On note (e1,...,ep) une base de E.

1. Si f est de classe C* sur U, alors on rappelle que f est différentiable et on a pour tout point a € U :
» of
fla+h)=fa)+ D hig—(a)+o(|Al)
i=1 ¢

2. Si f est de classe C? sur U, alors on admet que pour tout point a € U :

p 8 g g 82
fla+h) = fla) + Zhia—g(a) + % Zthjam—i + o(||n||?)
i=1 v bt

i=1 j=1

Remarque Cette formule de Taylor-Young est admise, mais elle provient de la formule de Taylor avec reste intégral appliquée
a la fonction vectorielle ¢t — f(a + th) sur [0, 1]... le calcul est laborieux d’autant qu’il n’est pas toujours simple de justifier
rigoureusement que le reste intégral est négligeable devant | h||>.

Définition Soit E un espace vectoriel normé de dimension finie et considérons f : U C E — R. On note (e1,...,ep) une base
de F et ainsi, on a pour tout = x1e1 + ... +ape, € E, f: (x1,...,2,) — f(z1,...,2p). Side plus, f est de classe C?, alors
—_———

on définit encore :

e la matrice jacobienne appartenant & Mi,(R), et constituée des dérivées partielles premieres :
of of
Jfo=——) ... —
r=(3tw . L

e la matrice hessienne appartenant & M, (R), et constituée des dérivées partielles secondes par :

9% f O f
871:%(.%) . 81’18:1;1) a
2 f
Hf, =
O f O f
781:1,8301 (z) .. 8—%2)(90)

Remarques
1. Bien entendu, si f est de classe C? sur U, alors le théoréme de Schwarz nous donne :

of (a) of

(’inaxj @)= 8:@81‘1

v(i,j) € [L,p]*, (a)

et ainsi, la matrice hessienne est symétrique réelle et ses valeurs propres sont réelles.
2. On peut alors réécrire la formule de Taylor-Young a 'ordre 2 de sorte que :
1
fla+h) = f(a)+ Jfah+ =h" Hfo.h +o(|h]%)
2
=Q(h)

En particulier, si a est un point critique, alors df, = 0 et ainsi, au voisinage de a, le signe de f(a + h) — f(a) dépend
directement du signe de 'expression quadratique Q(h).

Si on invoque le théoréme spectral, alors il existe P € O, (R) tel que Q(h) = hT.PDPT .h = (PTh)TD (PTh).

Et en notant Y = P"h € M,1(R), on a finalement :

Qh) = Nyt
i=1

C’est pour cela que le spectre de la matrice hessienne en un point est important : il peut, dans certains cas, nous
donner des informations supplémentaires sur un point critique.
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{Corollaire 18 (étude locale en un point critique).]

Soit F un espace vectoriel normé de dimension finie et considérons f : U C E — R qu’on suppose de classe C2. On note
(e1,...,ep) une base de E et a un point critique. Alors,

1. Si la matrice hessienne Hf, € S;F*(R), alors au voisinage de a, f(a + h) — f(a) > 0 et ainsi, f atteint un minimum
local en a.

2. Si la matrice hessienne H f, € S, ~(R), alors au voisinage de a, f(a + h) — f(a) < 0 et ainsi, f atteint un maximum
local en a.

3. Si la matrice hessienne posséde des valeurs propres de signes dictincts, alors au voisinage de a, f(a + h) — f(a) peut
changer de signe et il y a un point selle en a.

Remarques

1. Dans tous les autres cas, on fera attention a ne pas aller trop vite : en effet, ces ”dévelopements limités vectoriels”
nous donnent des informations dans les différentes directions autour du point a, mais si une valeur propre est nulle, on
perd l'information dans une direction et il faudrait alors augmenter ’ordre du développement limité pour conclure...
On veillera donc a affiner I’étude autour du point considéré.

2. En dimension 2, on ne sera pas obligé de déterminer les valeurs propres pour obtenir des informations sur leurs signes
et on pourra se contenter d’étudier la trace et le déterminant de la matrice hessienne.

3. De la méme fagon, on n’a ici que des informations locales et on attendra d’autres arguments pour justifier qu'’il s’agit
d’un extremum global.

Exemple 8 Pour chacune de ces fonctions, déterminer les extremas locaux, puis étudier s’il s’agit d’extremas globaux :

1. f:(z,y) € R® — 2% + oy + 13> + 22 + 3y

r oo
50250 2550
T 15100

-10.0 -7

10.0
5 —5.0 —2.5 00 25 50 7.5

2. f:(z,y) €R? — z* +y* — day
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3.3 Probléme des extremas liés

Dans certains cas, on ne travaille pas sur une partie ouverte, mais sur des parties définies par une ou plusieurs équations
reliant de fait les variables de notre fonction a plusieurs variables. Il existe alors une méthode tres pratique pour identifier
les points en lesquels se cachent un extremum : c’est le théoréme des extremas liés, admis en MP.

{Théoréme 19 (des extremas liés).]

Soit E un espace vectoriel euclidien et considérons f, g1, ..., gp des fonctions qu’on suppose de classe C* sur un ouvert U C E
a valeurs réelles et on définit :
X={zel, gi(z) =... = gp(x) =0}

Si fix admet un extremum en a et si les différentielles dgi,a,...,dgp,q« sont linéairement indépendantes, alors il existe des
réels Ai,...,\p tels que :

p

df|X,a, = Z )\idgi,a
i=1
Remarques

1. La partie X n’étant pas ouverte, on ne peut pas invoquer la condition nécessaire d’extremum. Par contre, ce résultat
est tres efficace et les coefficients Ai,..., A, qui interviennent seront appelés multiplicateurs de Lagrange.

2. Cette méthode est une condition nécessaire : elle nous permettra encore une fois d’identifier des points en lesquels il
peut y avoir un extremum, mais elle ne garantit pas la présence d’'un maximum ou d’un minimum. Généralement, on
essaiera de justifier leur existence autrement, avant de déterminer ces extremas.

Exemple 9 Les questions suivantes sont indépendantes.

1. Soit f: (x,y) € R? — xy, on étudie ses extremas sur le cercle unité S = {(x,y) € R?, 2* +¢y> — 1 = 0}.

(a) Justifier que f posséde un maximum et un minimum sur S.

(b) En utilisant le théoréme des extremas liés, retrouver alors les extremas de f sur S.
22 _

2. Soit f: (2,9,2) € R® — & + y + z, on étudie ses extremas sur £ = {(z,v, z) € R?, % + % = —1=0}.

(a) Justifier que £ désigne une partie compacte de R®*. En déduire que f possede un maximum et un minimum sur &.

(b) En utilisant le théoréme des extremas liés, retrouver alors les extremas de f sur €.
3. Soit f: (2,9,2) € R® — & + y + 2, on étudie ses extremas sur & = {(z,y, z) € R?, —% + % + % —1=0}.

(a) En utilisant le théoréme des extremas liés, déterminer les points en lesquels f posséde un extremum éventuel sur £’

(b) Considérons un point courant M; = (t,2,t/3) € £, avec t € R. Montrer que f ne posséde pas d’extremas sur &£’
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