Chapitre 12

Fonctions vectorielles et systéemes différentiels linéaires

Tout au long de l’année, nous avons essentiellement travaillé sur des fonctions a
valeurs réelles ou complexes. On s’inspire alors de ce qui a été fait pour généraliser
quelques résultats aux fonctions vectorielles.

Cela nous permettra en outre de revenir sur la résolution des équations différentielles
linéaires, en passant a chaque fois par un systeme différentiel et pour lequel l’inconnue
ne sera rien d’autre qu’une fonction vectorielle a valeurs dans Mn1(K).
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Pour aller plus loin

On revient surtout sur le principe de résolution des équations différentielles linéaires vues en premiére année, mais ce sera
aussi l'occasion de mettre en lumiére un théoreme fondamental : le théoréeme de Cauchy-Lipschitz linéaire qui justifie la
forme et la structure des solutions recherchées.
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1 Fonctions vectorielles d’une variable réelle

On considére E un K-espace vectoriel de dimension finie et on note ||.|| une norme sur E.

Définition Soit f une fonction définie sur un intervalle [ inclus dans R et & valeurs dans E. On dit encore que f est dérivable
en un réel a € I si le taux d’accroissement de f posséde une limite finie dans E. Ce vecteur limite sera noté f’(a) et ainsi :

f’(a) — lim f(l') 7f(a’) — lim f(a+h) *f(a)

T—a r—a h—0 h

Si de plus, la fonction f est dérivable en tout point de I, on appelle encore dérivée de f l'application définie sur [ par :

fit— (1)

Remarque On généralise naturellement des notions connues mais pour ces fonctions vectorielles, on préferera travailler sur
les accroissements de la forme f(a + h) — f(a), plus simple & mettre en oeuvre.

D’ailleurs, quand cette différence pourra étre approchée par une application linéaire, on parlera volontiers d’application
différentielle associée.

{Théoréme 1 (caractérisation de la dérivabilité).}

Soit f une fonction définie sur un intervalle I a valeurs dans E. Alors, f est dérivable en a € I si et seulement s’il existe un

vecteur ¢, € FE tel que :
fla+h) = (@) +htat o (h)

Dans ce cas, on a £, = f'(a) et application df, : h — h.{, désigne 'application différentielle associée en a.

» (C’est immédiat : on procede simplement par double implication.

Remarques

1. On prolonge ici la caractérisation vue en premiere année pour les fonctions d’une variable réelle a valeurs réelles, c’est
a dire que f est dérivable en a si et seulement si elle admet un développement limité d’ordre 1 en a et dans ce cas, on

a toujours :
f@) = f(@) + (=~ a).f @) + o (- a)
2. Attention, si on veut établir que f(a + h) — f(a) — h.ly = o(h), il faudra penser & raisonner en norme ||.|| puisqu’on

manipule des vecteurs et montrer que :

Hf(a"'h) _hf(a) _h~€a|l }:())0

Exemple 1 Fixons A € M, (K) et on considére 'application ¢ : R — M, (K) par :
¢(t) = exp(tA)

On munit M, (K) de la norme ||.||2 dont on sait qu’il s’agit d’une norme d’algebre.

1. (a) Etablir que ¢ est dérivable en 0 et que ¢'(0) = A de sorte que :

exp(hA) — I, A
h h—0

(b) En déduire que ¢ est dérivable sur R et que pour tout ¢t € R,
@' (t) = Aexp(tA) = exp(tA)A
2. En utilisant cette fois-ci les résultats sur les séries de fonctions, établir que ¢ est dérivable sur R et que pour tout ¢ € R,
@' (t) = Aexp(tA) = exp(tA)A
Remarque On fera attention a ne pas généraliser cette formule de dérivation... et par exemple, la formule :
i(exp(U(t))) = U'(t) exp(U(t)) n’est pas toujours vraie lorsque U désigne une fonction vectorielle !

dt

C’est pour cela qu’on ne pourra pas obtenir la preuve du théoréme de Cauchy-Lipschitz par la seule méthode du facteur
intégrant, et que celle-ci doit reposer sur autre chose.
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{Propriété 2 (caractérisation de la dérivabilité en dimension ﬁnie).]

Soit f une fonction définie sur un intervalle I & valeurs dans E, et notons B = (ey,...,e,) une base de E de sorte que pour
tout € I, f(z) = > _, fe(x)ex. Alors, f est dérivable sur I si et seulement si les applications composantes fx : I — K
sont dérivables et dans ce cas,

Vezel, fl(z)= Zf,’c(a:)ek
k=1

» On revient simplement au taux d’accroissement, qu’on pourra réécrire dans la base B.

Remarques

1. L’étude d’une fonction d’une variable réelle a valeurs dans un espace de dimension finie revient donc a étudier les
fonctions composantes. D’ailleurs, c’est exactement ce que vous faites en mécanique avec I'étude des trajectoires
données par des équations horaires. En mathématiques, on appelle cela I’étude des arcs paramétrés.

2. De la méme fagon, on peut aussi prolonger la notion de fonction de classe C™ sur un intervalle : une telle fonction f
sera dite de classe C™ sur [ si et seulement si les applications composantes fi sont de classe C™ sur I et dans ce cas,

Vael, f™(x) = znj £ (@)ex
k=1

{Propriété 3 (cas particulier des applications linéaires sur un espace de dimension ﬁnie).]

Soit f une fonctions définie sur un intervalle I a valeurs dans un espace vectoriel de dimension finie E et considérons
L : E — F une application linéaire.
Si de plus, f est dérivable sur I, alors L(f) est encore dérivable sur I et on a :

Vzel, (Lof)(z)=L(f (=)

» On pose u(x) = Lo f(x) et on revient au tauz d’accroissement avant de passer & la limite : attention, il ne faudra pas
oublier de justifier la continuité de L.

{Propriété 4 (cas particulier des applications bilinéaires sur des espaces de dimension ﬁnie).]

Soient f1, f2 des fonctions définies sur un intervalle I & valeurs dans un espace vectoriel de dimension finie E; et considérons
B : E1 x E2 — F une application bilinéaire.
Si de plus, f1 et f2 sont dérivables sur I, alors B(f1, f2) est encore dérivable sur I et on a :

V€, (B(f1, f2)) (=) = B(fi(2), f2(2)) + B(f1(2), f2(=))

» On pose u(xz) = B(f1(x), f2(z)) et on revient au tauz d’accroissement avant de passer & la limite : attention, il ne faudra
pas oublier de justifier la continuité de B.

Remarques
1. Ce dernier résultat se généralise et on pourra méme dériver des applications multi-linéaires. Autrement dit, en notant
M une application n-linéaire et si fi,..., fn : I — E; sont dérivables sur I, alors M(f1,..., fn) est dérivable sur I et
ona:

Vael, (M(fi,....fa) @) =D M(fi(@),..., fi(@),..., falx))
k=1

On pourra donc dériver de nombreuses expressions vectorielles : que ce soit le produit scalaire de deux fonctions d’une
variable réelle, le produit de deux matrices & parametre réel A(x).B(x) ou encore le déterminant d’une matrice a
parametre réel M (z) en voyant simplement chacune des colonnes comme une fonction vectorielle.

2. On peut méme aller plus loin et définir l'intégrale d’une telle fonction d’une variable réelle & valeurs dans un espace
vectoriel normé de dimension finie. En fait, il suffit une fois encore de se ramener aux applications composantes et
ainsi, si f = >_}_, frexr avec f1,..., fn continues par morceaux sur [a,b], on a par définition :

/a " p) di = Z;( / ) diyes

On pourra donc intégrer de nombreuses expressions vectorielles et prolonger des propriétés utiles qui avaient été établies
pour les fonctions a valeurs réelles ou complexes : les propriétés de l'intégrale, les formules du calcul intégral, la formule
de Taylor avec reste intégral...

www.cpgemp-troyes.fr 3


http://www.cpgemp-troyes.fr/

Chapitre 12
MP - Lycée Chrestien de Troyes Fonctions vectorielles et systémes différentiels linéaires

2 Equations différentielles linéaires et systémes différentiels linéaires

2.1 Existence et structure des solutions

Définition Soient n € N* et I un intervalle de R. On appelle équation différentielle linéaire d’ordre n toute équation de la|
forme :

an(By™ () + ...+ a1y (1) + ao()y(t) = b(t) (€)
d’inconnue y : I — K et pour laquelle a; et b désignent des fonctions continues sur I & valeurs dans K, et a,, # 0.
On dit alors que :
o f:I — Kest solution de (&) si f est de classe C™ sur I telle que: V¢ € I, an(t)f™ () +...4+a1(t)f (¢)+ao(t)f(t) = b(t).
e fi,..., fp sont des solutions linéairement indépendantes de (£) si elles désignent des solutions sur I telles que :

V(/\1,.,,7/\1,)€]Kp7 M+ .+ X%h=0=>X=...=X2,=0

autrement dit, elles représentent une famille libre de C" (1, K).

Remarques

1. De fagon un peu abusive, ces équations seront parfois données sous la forme :
an(ty"™ + ...+ ar(t)y + ao(t)y = b(t)

2. En particulier, on a : an # Or(;x). On en déduit par continuité de a,, qu’il existe un intervalle J C I tel que pour
tout t € J, an(t) # 0. Ainsi, '’équation pourra toujours étre ramenée sous une forme résolue ou normalisée, c’est &
dire que sur des intervalles bien choisis :

ai (t)
an(t)

ao(t) b(t)

a0+ @O (1) + oyt = b0 & ¥ @)+t v =20

y'(t) +

et les solutions obtenues pourront dépendre de I'intervalle considéré.

Définition Soient n € N* et I un intervalle de R. On appelle encore systéme différentiel linéaire du premier ordre toute
équation de la forme :
X'+ ABX@E) = B@®) (S)

d’inconnue X : I — My1(K) et pour laquelle les fonctions A : I — M, (K) et B : I — M1(K) désignent des fonctions
vectorielles qu’on suppose continues sur I.

On dit alors que :
o X : I — M1 (K) est solution de (S) si X est de classe C' sur I telle que : V¢ € I, X'(t) + A(t)X (t) = B(t).
e Xi,...,Xp sont des solutions linéairement indépendantes de (S) si elles désignent des solutions sur I telles que :

V()\L‘..,)\p)EKP, )\1X1+...+)\po=O:>)\1I...I)\p:O

autrement dit, elles représentent une famille libre de C' (I, M1 (K)).

{Propriété 5 (équivalence entre équation différentielle linéaire et systéme différentiel linéaire) )

v/

Soient n € N*, I un intervalle de R, et considérons I’équation différentelle linéaire normalisée :

YO + -+ a )y (1) + ao®)y(t) = b(t) (€)

/
f/
Alors, en notant f € C"(I,K), f est solution de (£) si et seulement si X = . est solution du systeéme différentiel
f(n.fl)
linéaire :
0 -1 ... 0 0
X'+ - 3 X@t)=| :
0 ... 0 -1 0
ao(t) ... an—1(t) b(t)

Autrement dit, déterminer les solutions d’une telle équation revient a résoudre le systéme différentiel linéaire du premier
ordre qui lui est associé.

» C’est immédiat, cela résulte des opérations matricielles.
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Remarque Cette équivalence est fondamentale, car c’est elle qui nous permettra de retrouver la structure des solutions des
équations différentielles linéaires d’ordre 1 ou 2 qui vous ont été présentées I’an dernier. En particulier,

e pour les équations différentielles linéaires d’ordre 1, c’est évident car on peut identifier les espaces M (K) et K.

e pour les équations différentielles linéaires d’ordre 2 :

' (6) + a(t)y (8) + b)) = c(t) & X'(t) + (b?t) a‘(tl)) X(t) = (C(Ot)) , avee X(t) = (5,((’?)).

{Théoréme 6 (de Cauchy-Lipschitz linéaire).]

Soit I un intervalle de R. On considére le systeme différentiel linéaire :
X'(t) + A@®)X (t) = B(t)

avec A: I — Myu(K) et B: I — My1(K) qu’on suppose continues sur 1.
Alors, on admet que pour tout (to, Xo) € I X My1(K), il existe une unique solution X : I — My1(K) telle que :

(%)

Vtel, X'(t) + A()X(t) = B(t)
X (to) = Xo

On dit aussi que X est 'unique solution du probléme de Cauchy (x).

En particulier, ’équivalence précédente nous donne :

e pour les équations différentielles linéaires d’ordre 1 de la forme y'(t) + a(t)y(t) = b(¢) :
pour tout (to,a) € I x K, il existe une unique solution y : I — K telle que :

{\u €1,y (1) +a)y(t) = b(t)
y(to) = a

e pour les équations différentielles linéaires d’ordre 2 de la forme y'' () + a(t)y’(t) + b(t)y(t) = c(t) :
pour tout (to,a, 8) € I x K2, il existe une unique solution y : I — K telle que :

Vtel, y' () +al)y (t) +bt)y(t) = c(t)

y(to) | _ [«
Yy (to) B

Remarques

1. Ce théoréme est fondamental et on lui trouvera de nombreuses applications. Par exemple, comme I X My, (K) n’est
pas vide, on aura toujours ’existence d’une solution sur I méme si celle-ci dépend des conditions initiales.

2. Les solutions d’une équation différentielle dépendront donc de l'intervalle de travail et des conditions initiales retenues.
Le plus souvent, on pourra représenter un ensemble de solutions passant par des points donnés : on parle alors de
faisceau de courbes intégrales.

solutions de y'+y/x=2

/

= T T T
-10.0 =75 -5.0 =25 0.0

10.0

7.5

Z

7
//
/
2.5 5.0 7.
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D’ailleurs, on essaiera parfois de faire un raccordement des solutions, au sens ou on cherchera a déterminer une
solution maximale de cette équation.

3. La preuve du théoréeme de Cauchy-Lipschitz repose en fait sur un théoréme de point fixe, c’est trés joli mais elle est
admise en dimension quelconque. Néanmoins, dans le cas particulier des équations différentielles linéaires du premier
ordre, on peut quand méme expliciter la solution par analyse-synthése et a l'aide d’un facteur intégrant :

{Théor‘eme 7 (de Cauchy-Lipschitz linéaire pour les équations différentielles linéaires d’ordre 1)]

Soient I un intervalle de R et (to, @) € I x K. On consideére le probléme de Cauchy :

{y'(t) +a(t)y(t) = b(t)

(to) , avec a,b: I — K continues sur I
Ylto) = &

t
Alors, en notant A(t) = / a(u) du, il existe une unique solution f : I — K du probléme de Cauchy et celle-ci est définie

to
par :

t
fit— e AW (qetto +/ b(w)e* ™ du)

to

» On raisonne par analyse-synthése et on utilise le facteur intégrant e pour faire apparaitre la dérivée d’un produit.

Remarque Bien entendu, il est inutile d’apprendre par coeur ’expression de cette solution, et nous reverrons plus tard
comment retrouver la forme des solutions a partir de la structure de ’espace des solutions.

Exemple 2 On considere le probleme de Cauchy :

{y'(x) — 2zy(z) = 1
y(0) =0

1. Déterminer 'unique fonction f développable en série entieére sur R et solution de ce probleme de Cauchy.

2. Justifier alors que pour tout x € R,
—+o0

22 [ e 4pl  opn
e e ' dt= ——— P
/o > (2p+1)!

p=0

{Propriété 8 (structure des solutions).]

Soit I un intervalle de R. On considére le systeme différentiel linéaire :
X'(t)+ A X (t) = B(t)

avec A: I — My (K) et B: I — My1(K) qu’on suppose continues sur I. On note S I’ensemble des solutions du systéme
différentiel et Sp ’ensemble des solutions du systeme homogene associé. Alors,

1. Sy est un K-espace vectoriel de dimension finie n, et ainsi il existe des solutions du systéme homogene Xi,..., X,
linéairement indépendantes telles que :
So = Vect(Xl, v 7,Xvn)

2. Si de plus Y}, désigne une solution particuliere du systeme différentiel linéaire, alors :
S={Y, +MXi+...+ Xn, (A1,...,An) €K"}
On peut alors écire S =Y}, + So et on dit que S est un espace affine de direction Sp.
Et en adaptant encore les choses, le théoréeme de Cauchy-Lipschitz nous livre :

e pour les équations différentielles linéaires d’ordre 1 et en notant f, une solution particuliere :

dim(So) =1 et ainsi, S = f, + So avec So = Vect(f1)

e pour les équations différentielles linéaires d’ordre 2 et en notant f, une solution particuliere :

dim(So) = 2 et ainsi, S = fp + So avec So = Vect(fi1, f2)
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» Pour le premier point, on revient a la caractérisation des sev puis on construit un isomorphisme de So sur Mnu1(K). Pour
le second point, on peut travailler par équivalence & partir de X € CH(I, M1 (K)).

Remarques
1. La structure des solutions nous permet d’identifier la forme des solutions et on retiendra par exemple qu’elle donne :

(f,9)€S*=f—-geSo

2. On retrouve également le principe de résolution qui a été présenté en premiere année : on commence par déterminer
les solutions Sp du systeme ou de I’équation homogene associée, puis on détermine une solution particuliere du systéme
ou de I’'équation avec second membre. D’ailleurs, pour cela, on pourra procéder de plusieurs facons :

e proposer une solution de la méme forme que le second membre,
e chercher une solution DSE par analyse-synthése,

e mettre en place la méthode de variation des constantes.
Exemple 3 Les questions suivantes sont indépendantes.
1. On note (£) ’équation différentielle définie par :

(&) ty'(t) + y(t) = arctan(t)
(a) Déterminer les solutions de (£) sur les intervalles I =] — o0, 0[ et I3 =|0, +o0].

(b) Montrer alors qu’il existe une unique solution f de (£) sur R tout entier.

2. On considere le systeme différentiel linéaire :

On note Sy ’ensemble des solutions définies sur R & valeurs réelles. Déterminer une base (X1, X2) de So.

2.2 Systeme fondamental de solutions et wronskien

Définition Soit I un intervalle de R. On considere le systeme différentiel linéaire :

X'(t)+ A)X(t) = B(t)

avec A: I — M, (K) et B: I — M;1(K) qu’on suppose continues sur /. On note encore S I’ensemble des solutions du systéme
différentiel tel que S =Y, + So.

e On appelle alors systéme fondamental de solutions toute base (X1,...,X,) de Sp de sorte que Sy = Vect(X1, ..., Xn).
e De plus, si Z1,.

.., Zn désignent d’autres solutions de Sp, on appelle wronskien de cette famille I'application :

Wtel—s det(Zi(t), ..., Zn(t))

{Propriété 9 (caractérisation d’un systéme fondamental de solutions & 1’aide du Wronskien).]
Soit I un intervalle de R. On considere le systéme différentiel lindaire X'(t) + A(t)X () = B(t), avec A : I — M, (K) et
B : I — My1(K) qu’on suppose continues sur I, et on note X,

Alors, les assertions suivantes sont équivalentes :

..., X, des solutions du systéme homogene associé.
1. (X1,...,Xn) est une base de Sy
2.Vtel, W()#0

3. 3to eI, W(to) #0

» On procéde simplement par cycle et on pourra pour la premiere implication raisonner par l’absurde.

Remarques

1. Le wronskien nous permettra donc de vérifier si des solutions de Sp sont linéairement indépendantes.

D’ailleurs,
I’équivalence entre équation différentielle linéaire et systeme différentiel associé nous donne aussi :

e pour les équations différentielles linéaires d’ordre 1 et en notant f; une solution de Sy : f1 est une base
de So si et seulement si det(f1) #0 < f1 #0.
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e pour les équations différentielles linéaires d’ordre 2 :et en notant f1, fo des solutions de So : (f1, f2) est

une base de Sy si et seulement si ((?) , (?)) est une base du systéme homogene, c’est a dire que :
1 2
fi(t)  fa(t)
0
[HONN 01N
2. En prenant les assertions contraires, on retrouve un résultat pratique : 'application W est nulle si et seulement s’il
existe tg € I, W(to) = 0.

vt €1,

{Propriété 10 (forme intégrale du Wronskien).}

Soit I un intervalle de R. On considére le systéme différentiel linéaire X'(t) + A(¢)X (t) = B(t), avec A : I — M, (K)
B : I — Mni1(K) qu'on suppose continues sur I, et on note Xi,..., X, des solutions du systéme homogene associé.
Alors, l'application W vérifie I’équation différentielle linéaire du premier ordre :

Y (8) + tr(A))y(t) = 0

et ainsi, pour tout ¢t € I, W(t) = W(to)e™ Jig trAM) du yuee ¢y fixé dans 1.

et

» Seul le premier point est un peu délicat : on dérive le déterminant, puis on montre que pour toute matrice A € M, (K),
¢ (x1,...,xn) —> det(Az1,...,xn)+...+det(x1,. .., Axy) est proportionnelle au déterminant. On aura alors une équation
différentielle qu’il suffira de résoudre.

Remarque Cette expression du wronskien n’est pas du tout au programme, mais elle vous permet de mieux comprendre la
remarque précédente :
Jtoel, W(to)=0=W =0

3 Principe de résolution

3.1 Présentation de la méthode de variation des constantes

{Propriété 11 (méthode de variation des constantes).]

Soit I un intervalle de R. On considere le systeme différentiel lindaire X'(t) + A(¢) X (t) = B(t), avec A : [ — M, (K)
B : I — My1(K) qu’on suppose continues sur I, et on note (Xi,...,X,) un systéme fondamental de solutions de Sp.
De plus, on définit la fonction vectorielle Y, : I — M1 (K) par :

Yo(5) = Z)\i(t)Xi(t) avec \; € C'(I,K)
i=1
Alors, Y, est solution particuliere du syteme différentiel linéaire si et seulement si pour tout ¢ € I,

S NOXi(t) = B®)

et

» C’est immédiat : il suffit de vérifier a quelle condition Yy, ainsi définie, est solution du systéme différentiel linéaire.

Remarques

1. On a établi la structure des solutions de ces problemes différentiels, et ainsi on a montré par exemple que :

S=Y,+ 5o
Autrement dit, si on peut déterminer un systéme fondamental de solutions de Sp, on pourra toujours chercher une
solution par la méthode de variation des constantes : celle-ci nous donnera un systéme d’équation en \;,..., A,
qu’il suffira de résoudre avant d’intégrer pour obtenir Ai,..., An, et donc la solution particuliere Y.

2. En fait, la matrice des coefficients associés est inversible, car son déterminant n’est rien d’autre que le wronskien du
systéme fondamental (X1,...,X,).

3. On fera souvent appel aux formules de Cramer pour établir 'expression de M| (t),. .., A;,(t) par de simples calculs,
d’autant que cela évitera de mettre en place des combinaisons maladroites.
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Chapitre 12
MP - Lycée Chrestien de Troyes Fonctions vectorielles et systémes différentiels linéaires

3.2 Cas particulier des EDL d’ordre 1

{Propriété 12 (résolution des EDL d’ordre 1)]

Soit I un intervalle de R et considérons ’équation différentielle linéaire y'(¢) + a(t)y(t) = b(t), avec a,b continues sur I.

1. En notant encore A une primitive de a sur I, alors f est solution de 1’équation homogene si et seulement s’il existe
X € K tel que f:t— Ae” ) de sorte que :

So = Vect(f1) avec f1 : t — e 40

2. De plus, la fonction f,, : t — A(¢) f1(t) est solution particuliere de ’équation si et seulement si X' (¢) f1(t) = b(t).

» Pour le premier point, on peut encore travailler par équivalence ou alors se contenter de vérifier que fi1 convient, avant
d’utiliser la dimension. Pour le second point, il suffit d’injecter f, dans l’équation.

Remarque Le résultat nous donne des solutions a valeurs dans K suivant que ’on souhaite des solutions réelles ou complexes.
Par exemple, si on ne cherche que des solutions a valeurs réelles, il suffira alors de restreindre I’ensemble des solutions a :

So = Vectg(t —s e 1)

Exemple 4 Déterminer les solutions réelles de I'équation différentielle y'(t) + y(t) tan(t) = cos®(t) sur ] — Z, Z|.

3.3 Cas particulier des EDL d’ordre 2 a coefficients constants

{Propriété 13 (résolution des EDL d’ordre 2 & coefficients constants).]

Soit I un intervalle de R et considérons I’équation différentielle linéaire ay” (t) + by’ (t) + cy(t) = d(t), avec a,b,c € C, a # 0
et d continue sur I.

1. Alors, en notant A le discriminant de 1’équation caractéristique ar® + br 4+ ¢ = 0, il vient :
e si A # 0, 'équation caractéristique posséde deux solutions distinctes (r1,7r2) € C?, et dans ce cas :
So = Vectc(f1, f2) avec f1:t € 1 +— et faitel—s et
e si A =0, ’équation caractéristique possede une solution double o € C, et dans ce cas :
So = Vecte(fi, fa) avec f1:t € [ — €™ fo:t € I — te™

2. De plus, on peut trouver une solution particuliere de la forme fp : t — A1 (£) f1(t) + A2() f2(t) telle que :

AL(8) fr(t) + A2 (t) f2(t)
ML) f1(t) + Ao (t) fa(t)

0
d(t)/a

» Pour le premier point, on peut encore travailler par équivalence ou alors se contenter de vérifier que f1 convient, avant
d’utiliser la dimension. Pour le second point, on peut revenir a l’équivalence avec le systeme différentiel associé.

Remarque On donne le résultat dans C, mais dans le cas particulier ou a,b, ¢ sont réels, on peut évidemment affiner la
forme des solutions de sorte que :

r1t rot
Tt e,

e si A > 0, alors on pourra en extraire les solutions a valeurs réelles : Vectr(t — e
e si A =0, alors on pourra en extraire les solutions & valeurs réelles : Vectr(t — €% t — te™?).
e si A <0, alors on a deux racines complexes conjuguées r1 = a + i3, r2 = 71 de sorte que :

So = Vecte(t —s e et —s e ") = Vecte(t —s e cos(Bt), t — e sin(Bt))

Et ainsi, on pourra encore en extraire les solutions a valeurs réelles :

So = Vectr(t — " cos(Bt),t — e sin(Bt))

Exemple 5

1. Déterminer une primitive de & — cos*(z).

2. En déduire les solutions réelles de 1’équation différentielle : y” () 4+ y(x) = cos®(z).
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3.4 Cas particulier des systémes différentiels a coefficients constants

{Propriété 14 (expression de Sy a l'aide de l’exponentielle).]

Soit I un intervalle de R. On considere le systeme différentiel linéaire X'(t) = AX(t) + B(t), avec A € M,(K) et B: I —
M1(K) qu’on suppose continue sur I. Alors, les solutions du systéme homogene sont données par :

X (t) = exp(tA)Xo avec Xo € Mn1(K)

» On utilise la facteur intégrant et on pourra rappeler t — exp(tA) est dérivable. Attention, il ne faudra pas oublier de
Justifier que exp(tA) est inversible avant d’exprimer X (t).

Remarque Si on développe le calcul précédent, alors on retrouve un systeme fondamental de solutions en les colonnes de
exp(tA). Bien entendu, il faudra donc étre capable de calculer une telle exponentielle avant d’en préciser les colonnes.

Exemple 6 On consideére le systeme différentiel :
3 1 -1
X'(t)= AX(t), avecA=[1 1 1
2 0 2

1. Déterminer les valeurs propres de A et en déduire que N = A — 2[5 est nilpotente.

2. Calculer exp(tA), puis en déduire un systéme fondamental de solutions de So.

{Propriété 15 (systeme fondamental de solutions dans le cas ot A est diagonalisable).]

Soit I un intervalle de R. On considére le systeme différentiel linéaire X'(¢t) = AX(t) + B(t), avec A € M,(K) et B: [ —
M1(K) qu’on suppose continue sur I. On suppose de plus que A est diagonalisable et on note (Vi,...,V,) une base de
vecteurs propres associée aux valeurs propres A1, ..., An.

Alors, on peut définir un systéme fondamental de solutions :

X1 t— e’\lch...,Xn A e)‘"tVn

» Comme pour les équations différentielles, on vérifie que ces vecteurs conviennent avant d’invoquer la dimension de Sp.

Remarques

1. A Poral, c’est bien de savoir comment s’écrit un tel systéme fondamental de solutions, mais la plupart du temps, on
nous demandera d’effectuer la réduction afin d’obtenir un systéme différentiel équivalent par changement de
variable :

e si A est diagonalisable, alors il existe P € GL, (K) telle que A = PDP™', et ainsi :
X'(t) = AX(t) + B(t) & X'(t) = PDP"'X(t) + B(t) & (P"'X)'(t) = D(P'X)(t) + P"'B(t)
En posant Y (t) = P! X (t), cela équivaut & résoudre le systeme :
Y'(t) = DY (t) + P~'B(t)

La matrice D étant diagonale, on obtient des équations différentielles plus faciles a résoudre.

e si A est trigonalisable, alors il existe P € GL,,(K) telle que A = PTP ™!, et ainsi :
X'(t) = AX(t) + B(t) & X'(t) = PTP"'X(t) + B(t) & (P"'X)'(t) = T(P"' X)(t) + P~ ' B(t)
En posant Y (t) = P71 X(t), cela équivaut & résoudre le systéme :
Y'(t) = TY(t) + P' B(t)
La matrice T étant triangulaire, on obtient un systéme triangulaire d’équations différentielles plus faciles a résoudre.

2. Dans la méthode précédente, on pourra observer que si le systéme est homogene, alors le calcul de P~ est inutile : en
effet, une fois Y obtenu, on a directement X = PY.
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1 0 2
Exemple 7 On consideére la matrice A = 0 1 0
2 0 1

1. Justifier sans calcul que A est diagonalisable.

2. Déterminer les éléments propres de A, puis résoudre le systeme différentiel suivant :

' =x+22
Yy =y
2 =2zx4+z

x,y, z désignant trois fonctions de la variable ¢, dérivables sur R.
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