
Fonctions vectorielles et systèmes différentiels linéaires

Chapitre 12

Tout au long de l’année, nous avons essentiellement travaillé sur des fonctions à
valeurs réelles ou complexes. On s’inspire alors de ce qui a été fait pour généraliser
quelques résultats aux fonctions vectorielles.
Cela nous permettra en outre de revenir sur la résolution des équations différentielles
linéaires, en passant à chaque fois par un système différentiel et pour lequel l’inconnue
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Pour aller plus loin
On revient surtout sur le principe de résolution des équations différentielles linéaires vues en première année, mais ce sera
aussi l’occasion de mettre en lumière un théorème fondamental : le théorème de Cauchy-Lipschitz linéaire qui justifie la
forme et la structure des solutions recherchées.
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1 Fonctions vectorielles d’une variable réelle

On considère E un K-espace vectoriel de dimension finie et on note ‖.‖ une norme sur E.

Définition Soit f une fonction définie sur un intervalle I inclus dans R et à valeurs dans E. On dit encore que f est dérivable
en un réel a ∈ I si le taux d’accroissement de f possède une limite finie dans E. Ce vecteur limite sera noté f ′(a) et ainsi :

f ′(a) = lim
x→a

f(x)− f(a)

x− a = lim
h→0

f(a+ h)− f(a)

h

Si de plus, la fonction f est dérivable en tout point de I, on appelle encore dérivée de f l’application définie sur I par :

f ′ : t 7−→ f ′(t)

Remarque On généralise naturellement des notions connues mais pour ces fonctions vectorielles, on préfèrera travailler sur
les accroissements de la forme f(a+ h)− f(a), plus simple à mettre en oeuvre.
D’ailleurs, quand cette différence pourra être approchée par une application linéaire, on parlera volontiers d’application
différentielle associée.

Soit f une fonction définie sur un intervalle I à valeurs dans E. Alors, f est dérivable en a ∈ I si et seulement s’il existe un
vecteur `a ∈ E tel que :

f(a+ h) = f(a) + h.`a + o
h→0

(h)

Dans ce cas, on a `a = f ′(a) et l’application dfa : h 7−→ h.`a désigne l’application différentielle associée en a.

Théorème 1 (caractérisation de la dérivabilité).

I C’est immédiat : on procède simplement par double implication.

Remarques

1. On prolonge ici la caractérisation vue en première année pour les fonctions d’une variable réelle à valeurs réelles, c’est
à dire que f est dérivable en a si et seulement si elle admet un développement limité d’ordre 1 en a et dans ce cas, on
a toujours :

f(x) = f(a) + (x− a).f ′(a) + o
x→a

(x− a)

2. Attention, si on veut établir que f(a + h) − f(a) − h.`a = o(h), il faudra penser à raisonner en norme ‖.‖ puisqu’on
manipule des vecteurs et montrer que :

‖f(a+ h)− f(a)− h.`a
h

‖ −→
h→0

0

Exemple 1 Fixons A ∈Mn(K) et on considère l’application φ : R −→Mn(K) par :

φ(t) = exp(tA)

On munit Mn(K) de la norme ‖.‖2 dont on sait qu’il s’agit d’une norme d’algèbre.

1. (a) Etablir que φ est dérivable en 0 et que φ′(0) = A de sorte que :

exp(hA)− In
h

−→
h→0

A

(b) En déduire que φ est dérivable sur R et que pour tout t ∈ R,

φ′(t) = A exp(tA) = exp(tA)A

2. En utilisant cette fois-ci les résultats sur les séries de fonctions, établir que φ est dérivable sur R et que pour tout t ∈ R,

φ′(t) = A exp(tA) = exp(tA)A

Remarque On fera attention à ne pas généraliser cette formule de dérivation... et par exemple, la formule :

d

dt
(exp(U(t))) = U ′(t) exp(U(t)) n’est pas toujours vraie lorsque U désigne une fonction vectorielle !

C’est pour cela qu’on ne pourra pas obtenir la preuve du théorème de Cauchy-Lipschitz par la seule méthode du facteur
intégrant, et que celle-ci doit reposer sur autre chose.
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Soit f une fonction définie sur un intervalle I à valeurs dans E, et notons B = (e1, . . . , en) une base de E de sorte que pour
tout x ∈ I, f(x) =

∑n
k=1 fk(x)ek. Alors, f est dérivable sur I si et seulement si les applications composantes fk : I −→ K

sont dérivables et dans ce cas,

∀ x ∈ I, f ′(x) =

n∑
k=1

f ′k(x)ek

Propriété 2 (caractérisation de la dérivabilité en dimension finie).

I On revient simplement au taux d’accroissement, qu’on pourra réécrire dans la base B.

Remarques

1. L’étude d’une fonction d’une variable réelle à valeurs dans un espace de dimension finie revient donc à étudier les
fonctions composantes. D’ailleurs, c’est exactement ce que vous faites en mécanique avec l’étude des trajectoires
données par des équations horaires. En mathématiques, on appelle cela l’étude des arcs paramétrés.

2. De la même façon, on peut aussi prolonger la notion de fonction de classe Cn sur un intervalle : une telle fonction f
sera dite de classe Cn sur I si et seulement si les applications composantes fk sont de classe Cn sur I et dans ce cas,

∀ x ∈ I, f (n)(x) =

n∑
k=1

f
(n)
k (x)ek

Soit f une fonctions définie sur un intervalle I à valeurs dans un espace vectoriel de dimension finie E et considérons
L : E −→ F une application linéaire.
Si de plus, f est dérivable sur I, alors L(f) est encore dérivable sur I et on a :

∀ x ∈ I, (L ◦ f)′(x) = L(f ′(x))

Propriété 3 (cas particulier des applications linéaires sur un espace de dimension finie).

I On pose u(x) = L ◦ f(x) et on revient au taux d’accroissement avant de passer à la limite : attention, il ne faudra pas
oublier de justifier la continuité de L.

Soient f1, f2 des fonctions définies sur un intervalle I à valeurs dans un espace vectoriel de dimension finie Ei et considérons
B : E1 × E2 −→ F une application bilinéaire.
Si de plus, f1 et f2 sont dérivables sur I, alors B(f1, f2) est encore dérivable sur I et on a :

∀ x ∈ I, (B(f1, f2))′(x) = B(f ′1(x), f2(x)) +B(f1(x), f ′2(x))

Propriété 4 (cas particulier des applications bilinéaires sur des espaces de dimension finie).

I On pose u(x) = B(f1(x), f2(x)) et on revient au taux d’accroissement avant de passer à la limite : attention, il ne faudra
pas oublier de justifier la continuité de B.

Remarques

1. Ce dernier résultat se généralise et on pourra même dériver des applications multi-linéaires. Autrement dit, en notant
M une application n-linéaire et si f1, . . . , fn : I −→ Ei sont dérivables sur I, alors M(f1, . . . , fn) est dérivable sur I et
on a :

∀ x ∈ I, (M(f1, . . . , fn))′(x) =

n∑
k=1

M(f1(x), . . . , f ′k(x), . . . , fn(x))

On pourra donc dériver de nombreuses expressions vectorielles : que ce soit le produit scalaire de deux fonctions d’une
variable réelle, le produit de deux matrices à paramètre réel A(x).B(x) ou encore le déterminant d’une matrice à
paramètre réel M(x) en voyant simplement chacune des colonnes comme une fonction vectorielle.

2. On peut même aller plus loin et définir l’intégrale d’une telle fonction d’une variable réelle à valeurs dans un espace
vectoriel normé de dimension finie. En fait, il suffit une fois encore de se ramener aux applications composantes et
ainsi, si f =

∑n
k=1 fkek avec f1, . . . , fn continues par morceaux sur [a, b], on a par définition :∫ b

a

f(t) dt =

n∑
k=1

(

∫ b

a

fk(t) dt)ek

On pourra donc intégrer de nombreuses expressions vectorielles et prolonger des propriétés utiles qui avaient été établies
pour les fonctions à valeurs réelles ou complexes : les propriétés de l’intégrale, les formules du calcul intégral, la formule
de Taylor avec reste intégral...
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2 Equations différentielles linéaires et systèmes différentiels linéaires

2.1 Existence et structure des solutions

Définition Soient n ∈ N∗ et I un intervalle de R. On appelle équation différentielle linéaire d’ordre n toute équation de la
forme :

an(t)y(n)(t) + . . .+ a1(t)y′(t) + a0(t)y(t) = b(t) (E)

d’inconnue y : I −→ K et pour laquelle ai et b désignent des fonctions continues sur I à valeurs dans K, et an 6= 0.

On dit alors que :

• f : I −→ K est solution de (E) si f est de classe Cn sur I telle que : ∀ t ∈ I, an(t)f (n)(t)+ . . .+a1(t)f ′(t)+a0(t)f(t) = b(t).

• f1, . . . , fp sont des solutions linéairement indépendantes de (E) si elles désignent des solutions sur I telles que :

∀ (λ1, . . . , λp) ∈ Kp, λ1f1 + . . .+ λpfp = 0⇒ λ1 = . . . = λp = 0

autrement dit, elles représentent une famille libre de Cn(I,K).

Remarques

1. De façon un peu abusive, ces équations seront parfois données sous la forme :

an(t)y(n) + . . .+ a1(t)y′ + a0(t)y = b(t)

2. En particulier, on a : an 6= 0F(I,K). On en déduit par continuité de an, qu’il existe un intervalle J ⊂ I tel que pour
tout t ∈ J , an(t) 6= 0. Ainsi, l’équation pourra toujours être ramenée sous une forme résolue ou normalisée, c’est à
dire que sur des intervalles bien choisis :

an(t)y(n)(t) + . . .+ a1(t)y′(t) + a0(t)y(t) = b(t) ⇔ y(n)(t) + . . .+
a1(t)

an(t)
y′(t) +

a0(t)

an(t)
y(t) =

b(t)

an(t)

et les solutions obtenues pourront dépendre de l’intervalle considéré.

Définition Soient n ∈ N∗ et I un intervalle de R. On appelle encore système différentiel linéaire du premier ordre toute
équation de la forme :

X ′(t) +A(t)X(t) = B(t) (S)

d’inconnue X : I −→ Mn1(K) et pour laquelle les fonctions A : I −→ Mn(K) et B : I −→ Mn1(K) désignent des fonctions
vectorielles qu’on suppose continues sur I.

On dit alors que :

• X : I −→Mn1(K) est solution de (S) si X est de classe C1 sur I telle que : ∀ t ∈ I, X ′(t) +A(t)X(t) = B(t).

• X1, . . . , Xp sont des solutions linéairement indépendantes de (S) si elles désignent des solutions sur I telles que :

∀ (λ1, . . . , λp) ∈ Kp, λ1X1 + . . .+ λpXp = 0⇒ λ1 = . . . = λp = 0

autrement dit, elles représentent une famille libre de C1(I,Mn1(K)).

Soient n ∈ N∗, I un intervalle de R, et considérons l’équation différentelle linéaire normalisée :

y(n)(t) + . . .+ a1(t)y′(t) + a0(t)y(t) = b(t) (E)

Alors, en notant f ∈ Cn(I,K), f est solution de (E) si et seulement si X =


f
f ′

...

f (n−1)

 est solution du système différentiel

linéaire :

X ′(t) +


0 −1 . . . 0
...

. . .
. . .

...
0 . . . 0 −1

a0(t) . . . an−1(t)

X(t) =


0
...
0
b(t)


Autrement dit, déterminer les solutions d’une telle équation revient à résoudre le système différentiel linéaire du premier
ordre qui lui est associé.

Propriété 5 (équivalence entre équation différentielle linéaire et système différentiel linéaire).

I C’est immédiat, cela résulte des opérations matricielles.
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Remarque Cette équivalence est fondamentale, car c’est elle qui nous permettra de retrouver la structure des solutions des
équations différentielles linéaires d’ordre 1 ou 2 qui vous ont été présentées l’an dernier. En particulier,

• pour les équations différentielles linéaires d’ordre 1, c’est évident car on peut identifier les espaces M1(K) et K.

• pour les équations différentielles linéaires d’ordre 2 :

y′′(t) + a(t)y′(t) + b(t)y(t) = c(t) ⇔ X ′(t) +

(
0 −1
b(t) a(t)

)
X(t) =

(
0
c(t)

)
, avec X(t) =

(
y(t)
y′(t)

)
.

Soit I un intervalle de R. On considère le système différentiel linéaire :

X ′(t) +A(t)X(t) = B(t)

avec A : I −→Mn(K) et B : I −→Mn1(K) qu’on suppose continues sur I.
Alors, on admet que pour tout (t0, X0) ∈ I ×Mn1(K), il existe une unique solution X : I −→Mn1(K) telle que :{

∀ t ∈ I, X ′(t) +A(t)X(t) = B(t)

X(t0) = X0

(∗)

On dit aussi que X est l’unique solution du problème de Cauchy (∗).

En particulier, l’équivalence précédente nous donne :

• pour les équations différentielles linéaires d’ordre 1 de la forme y′(t) + a(t)y(t) = b(t) :
pour tout (t0, α) ∈ I ×K, il existe une unique solution y : I −→ K telle que :{

∀ t ∈ I, y′(t) + a(t)y(t) = b(t)

y(t0) = α

• pour les équations différentielles linéaires d’ordre 2 de la forme y′′(t) + a(t)y′(t) + b(t)y(t) = c(t) :
pour tout (t0, α, β) ∈ I ×K2, il existe une unique solution y : I −→ K telle que :

∀ t ∈ I, y′′(t) + a(t)y′(t) + b(t)y(t) = c(t)(
y(t0)

y′(t0)

)
=

(
α

β

)

Théorème 6 (de Cauchy-Lipschitz linéaire).

Remarques

1. Ce théorème est fondamental et on lui trouvera de nombreuses applications. Par exemple, comme I ×Mn1(K) n’est
pas vide, on aura toujours l’existence d’une solution sur I même si celle-ci dépend des conditions initiales.

2. Les solutions d’une équation différentielle dépendront donc de l’intervalle de travail et des conditions initiales retenues.
Le plus souvent, on pourra représenter un ensemble de solutions passant par des points donnés : on parle alors de
faisceau de courbes intégrales.
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D’ailleurs, on essaiera parfois de faire un raccordement des solutions, au sens où on cherchera à déterminer une
solution maximale de cette équation.

3. La preuve du théorème de Cauchy-Lipschitz repose en fait sur un théorème de point fixe, c’est très joli mais elle est
admise en dimension quelconque. Néanmoins, dans le cas particulier des équations différentielles linéaires du premier
ordre, on peut quand même expliciter la solution par analyse-synthèse et à l’aide d’un facteur intégrant :

Soient I un intervalle de R et (t0, α) ∈ I ×K. On considère le problème de Cauchy :{
y′(t) + a(t)y(t) = b(t)

y(t0) = α
, avec a, b : I −→ K continues sur I

Alors, en notant A(t) =

∫ t

t0

a(u) du, il existe une unique solution f : I −→ K du problème de Cauchy et celle-ci est définie

par :

f : t 7−→ e−A(t)(αeA(t0) +

∫ t

t0

b(u)eA(u) du)

Théorème 7 (de Cauchy-Lipschitz linéaire pour les équations différentielles linéaires d’ordre 1).

I On raisonne par analyse-synthèse et on utilise le facteur intégrant eA(t) pour faire apparâıtre la dérivée d’un produit.

Remarque Bien entendu, il est inutile d’apprendre par coeur l’expression de cette solution, et nous reverrons plus tard
comment retrouver la forme des solutions à partir de la structure de l’espace des solutions.

Exemple 2 On considère le problème de Cauchy : {
y′(x)− 2xy(x) = 1

y(0) = 0

1. Déterminer l’unique fonction f développable en série entière sur R et solution de ce problème de Cauchy.

2. Justifier alors que pour tout x ∈ R,

ex
2
∫ x

0

e−t
2

dt =

+∞∑
p=0

4pp!

(2p+ 1)!
x2p+1

Soit I un intervalle de R. On considère le système différentiel linéaire :

X ′(t) +A(t)X(t) = B(t)

avec A : I −→Mn(K) et B : I −→Mn1(K) qu’on suppose continues sur I. On note S l’ensemble des solutions du système
différentiel et S0 l’ensemble des solutions du système homogène associé. Alors,

1. S0 est un K-espace vectoriel de dimension finie n, et ainsi il existe des solutions du système homogène X1, . . . , Xn
linéairement indépendantes telles que :

S0 = V ect(X1, . . . , Xn)

2. Si de plus Yp désigne une solution particulière du système différentiel linéaire, alors :

S = {Yp + λ1X1 + . . .+ λnXn, (λ1, . . . , λn) ∈ Kn}

On peut alors écire S = Yp + S0 et on dit que S est un espace affine de direction S0.

Et en adaptant encore les choses, le théorème de Cauchy-Lipschitz nous livre :

• pour les équations différentielles linéaires d’ordre 1 et en notant fp une solution particulière :

dim(S0) = 1 et ainsi, S = fp + S0 avec S0 = V ect(f1)

• pour les équations différentielles linéaires d’ordre 2 et en notant fp une solution particulière :

dim(S0) = 2 et ainsi, S = fp + S0 avec S0 = V ect(f1, f2)

Propriété 8 (structure des solutions).
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I Pour le premier point, on revient à la caractérisation des sev puis on construit un isomorphisme de S0 sur Mn1(K). Pour
le second point, on peut travailler par équivalence à partir de X ∈ C1(I,Mn1(K)).

Remarques

1. La structure des solutions nous permet d’identifier la forme des solutions et on retiendra par exemple qu’elle donne :

(f, g) ∈ S2 ⇒ f − g ∈ S0

2. On retrouve également le principe de résolution qui a été présenté en première année : on commence par déterminer
les solutions S0 du système ou de l’équation homogène associée, puis on détermine une solution particulière du système
ou de l’équation avec second membre. D’ailleurs, pour cela, on pourra procéder de plusieurs façons :

• proposer une solution de la même forme que le second membre,

• chercher une solution DSE par analyse-synthèse,

• mettre en place la méthode de variation des constantes.

Exemple 3 Les questions suivantes sont indépendantes.

1. On note (E) l’équation différentielle définie par :

(E) ty′(t) + y(t) = arctan(t)

(a) Déterminer les solutions de (E) sur les intervalles I1 =]−∞, 0[ et I2 =]0,+∞[.

(b) Montrer alors qu’il existe une unique solution f de (E) sur R tout entier.

2. On considère le système différentiel linéaire :

X ′(t) =

(
−t −1
1 −t

)
X(t)

On note S0 l’ensemble des solutions définies sur R à valeurs réelles. Déterminer une base (X1, X2) de S0.

2.2 Système fondamental de solutions et wronskien

Définition Soit I un intervalle de R. On considère le système différentiel linéaire :

X ′(t) +A(t)X(t) = B(t)

avec A : I −→Mn(K) et B : I −→Mn1(K) qu’on suppose continues sur I. On note encore S l’ensemble des solutions du système
différentiel tel que S = Yp + S0.

• On appelle alors système fondamental de solutions toute base (X1, . . . , Xn) de S0 de sorte que S0 = V ect(X1, . . . , Xn).

• De plus, si Z1, . . . , Zn désignent d’autres solutions de S0, on appelle wronskien de cette famille l’application :

W : t ∈ I 7−→ det(Z1(t), . . . , Zn(t))

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) + A(t)X(t) = B(t), avec A : I −→ Mn(K) et
B : I −→Mn1(K) qu’on suppose continues sur I, et on note X1, . . . , Xn des solutions du système homogène associé.
Alors, les assertions suivantes sont équivalentes :

1. (X1, . . . , Xn) est une base de S0

2. ∀ t ∈ I, W (t) 6= 0

3. ∃ t0 ∈ I, W (t0) 6= 0

Propriété 9 (caractérisation d’un système fondamental de solutions à l’aide du wronskien).

I On procède simplement par cycle et on pourra pour la première implication raisonner par l’absurde.

Remarques

1. Le wronskien nous permettra donc de vérifier si des solutions de S0 sont linéairement indépendantes. D’ailleurs,
l’équivalence entre équation différentielle linéaire et système différentiel associé nous donne aussi :

• pour les équations différentielles linéaires d’ordre 1 et en notant f1 une solution de S0 : f1 est une base
de S0 si et seulement si det(f1) 6= 0⇔ f1 6= 0.
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• pour les équations différentielles linéaires d’ordre 2 :et en notant f1, f2 des solutions de S0 : (f1, f2) est

une base de S0 si et seulement si (

(
f1
f ′1

)
,

(
f2
f ′2

)
) est une base du système homogène, c’est à dire que :

∀t ∈ I,
∣∣∣∣f1(t) f2(t)
f ′1(t) f ′2(t)

∣∣∣∣ 6= 0

2. En prenant les assertions contraires, on retrouve un résultat pratique : l’application W est nulle si et seulement s’il
existe t0 ∈ I, W (t0) = 0.

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) + A(t)X(t) = B(t), avec A : I −→ Mn(K) et
B : I −→Mn1(K) qu’on suppose continues sur I, et on note X1, . . . , Xn des solutions du système homogène associé.
Alors, l’application W vérifie l’équation différentielle linéaire du premier ordre :

y′(t) + tr(A(t))y(t) = 0

et ainsi, pour tout t ∈ I, W (t) = W (t0)e
−

∫ t
t0
tr(A(u)) du

avec t0 fixé dans I.

Propriété 10 (forme intégrale du wronskien).

I Seul le premier point est un peu délicat : on dérive le déterminant, puis on montre que pour toute matrice A ∈ Mn(K),
φ : (x1, . . . , xn) 7−→ det(Ax1, . . . , xn)+ . . .+det(x1, . . . , Axn) est proportionnelle au déterminant. On aura alors une équation
différentielle qu’il suffira de résoudre.

Remarque Cette expression du wronskien n’est pas du tout au programme, mais elle vous permet de mieux comprendre la
remarque précédente :

∃ t0 ∈ I, W (t0) = 0⇒W = 0

3 Principe de résolution

3.1 Présentation de la méthode de variation des constantes

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) + A(t)X(t) = B(t), avec A : I −→ Mn(K) et
B : I −→Mn1(K) qu’on suppose continues sur I, et on note (X1, . . . , Xn) un système fondamental de solutions de S0.
De plus, on définit la fonction vectorielle Yp : I −→Mn1(K) par :

Yp(t) =

n∑
i=1

λi(t)Xi(t) avec λi ∈ C1(I,K)

Alors, Yp est solution particulière du sytème différentiel linéaire si et seulement si pour tout t ∈ I,

n∑
i=1

λ′i(t)Xi(t) = B(t)

Propriété 11 (méthode de variation des constantes).

I C’est immédiat : il suffit de vérifier à quelle condition Yp, ainsi définie, est solution du système différentiel linéaire.

Remarques

1. On a établi la structure des solutions de ces problèmes différentiels, et ainsi on a montré par exemple que :

S = Yp + S0

Autrement dit, si on peut déterminer un système fondamental de solutions de S0, on pourra toujours chercher une
solution par la méthode de variation des constantes : celle-ci nous donnera un système d’équation en λ′1, . . . , λ

′
n

qu’il suffira de résoudre avant d’intégrer pour obtenir λ1, . . . , λn, et donc la solution particulière Yp.

2. En fait, la matrice des coefficients associés est inversible, car son déterminant n’est rien d’autre que le wronskien du
système fondamental (X1, . . . , Xn).

3. On fera souvent appel aux formules de Cramer pour établir l’expression de λ′1(t), . . . , λ′n(t) par de simples calculs,
d’autant que cela évitera de mettre en place des combinaisons maladroites.
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3.2 Cas particulier des EDL d’ordre 1

Soit I un intervalle de R et considérons l’équation différentielle linéaire y′(t) + a(t)y(t) = b(t), avec a, b continues sur I.

1. En notant encore A une primitive de a sur I, alors f est solution de l’équation homogène si et seulement s’il existe
λ ∈ K tel que f : t 7−→ λe−A(t) de sorte que :

S0 = V ect(f1) avec f1 : t 7−→ e−A(t)

2. De plus, la fonction fp : t 7−→ λ(t)f1(t) est solution particulière de l’équation si et seulement si λ′(t)f1(t) = b(t).

Propriété 12 (résolution des EDL d’ordre 1).

I Pour le premier point, on peut encore travailler par équivalence ou alors se contenter de vérifier que f1 convient, avant
d’utiliser la dimension. Pour le second point, il suffit d’injecter fp dans l’équation.

Remarque Le résultat nous donne des solutions à valeurs dans K suivant que l’on souhaite des solutions réelles ou complexes.
Par exemple, si on ne cherche que des solutions à valeurs réelles, il suffira alors de restreindre l’ensemble des solutions à :

S0 = V ectR(t 7−→ e−A(t))

Exemple 4 Déterminer les solutions réelles de l’équation différentielle y′(t) + y(t) tan(t) = cos2(t) sur ]− π
2
, π
2

[.

3.3 Cas particulier des EDL d’ordre 2 à coefficients constants

Soit I un intervalle de R et considérons l’équation différentielle linéaire ay′′(t) + by′(t) + cy(t) = d(t), avec a, b, c ∈ C, a 6= 0
et d continue sur I.

1. Alors, en notant ∆ le discriminant de l’équation caractéristique ar2 + br + c = 0, il vient :

• si ∆ 6= 0, l’équation caractéristique possède deux solutions distinctes (r1, r2) ∈ C2, et dans ce cas :

S0 = V ectC(f1, f2) avec f1 : t ∈ I 7−→ er1t, f2 : t ∈ I 7−→ er2t

• si ∆ = 0, l’équation caractéristique possède une solution double r0 ∈ C, et dans ce cas :

S0 = V ectC(f1, f2) avec f1 : t ∈ I 7−→ er0t, f2 : t ∈ I 7−→ ter0t

2. De plus, on peut trouver une solution particulière de la forme fp : t 7−→ λ1(t)f1(t) + λ2(t)f2(t) telle que :{
λ′1(t)f1(t) + λ′2(t)f2(t) = 0

λ′1(t)f ′1(t) + λ′2(t)f ′2(t) = d(t)/a

Propriété 13 (résolution des EDL d’ordre 2 à coefficients constants).

I Pour le premier point, on peut encore travailler par équivalence ou alors se contenter de vérifier que f1 convient, avant
d’utiliser la dimension. Pour le second point, on peut revenir à l’équivalence avec le système différentiel associé.

Remarque On donne le résultat dans C, mais dans le cas particulier où a, b, c sont réels, on peut évidemment affiner la
forme des solutions de sorte que :

• si ∆ > 0, alors on pourra en extraire les solutions à valeurs réelles : V ectR(t 7−→ er1t, t 7−→ er2t).

• si ∆ = 0, alors on pourra en extraire les solutions à valeurs réelles : V ectR(t 7−→ er0t, t 7−→ ter0t).

• si ∆ < 0, alors on a deux racines complexes conjuguées r1 = α+ iβ, r2 = r1 de sorte que :

S0 = V ectC(t 7−→ eαteiβt, t 7−→ eαte−iβt) = V ectC(t 7−→ eαt cos(βt), t 7−→ eαt sin(βt))

Et ainsi, on pourra encore en extraire les solutions à valeurs réelles :

S0 = V ectR(t 7−→ eαt cos(βt), t 7−→ eαt sin(βt))

Exemple 5

1. Déterminer une primitive de x 7−→ cos4(x).

2. En déduire les solutions réelles de l’équation différentielle : y′′(x) + y(x) = cos3(x).
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3.4 Cas particulier des systèmes différentiels à coefficients constants

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) = AX(t) +B(t), avec A ∈ Mn(K) et B : I −→
Mn1(K) qu’on suppose continue sur I. Alors, les solutions du système homogène sont données par :

X(t) = exp(tA)X0 avec X0 ∈Mn1(K)

Propriété 14 (expression de S0 à l’aide de l’exponentielle).

I On utilise la facteur intégrant et on pourra rappeler t 7−→ exp(tA) est dérivable. Attention, il ne faudra pas oublier de
justifier que exp(tA) est inversible avant d’exprimer X(t).

Remarque Si on développe le calcul précédent, alors on retrouve un système fondamental de solutions en les colonnes de
exp(tA). Bien entendu, il faudra donc être capable de calculer une telle exponentielle avant d’en préciser les colonnes.

Exemple 6 On considère le système différentiel :

X ′(t) = AX(t), avec A =

3 1 −1
1 1 1
2 0 2


1. Déterminer les valeurs propres de A et en déduire que N = A− 2I3 est nilpotente.

2. Calculer exp(tA), puis en déduire un système fondamental de solutions de S0.

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) = AX(t) +B(t), avec A ∈ Mn(K) et B : I −→
Mn1(K) qu’on suppose continue sur I. On suppose de plus que A est diagonalisable et on note (V1, . . . , Vn) une base de
vecteurs propres associée aux valeurs propres λ1, . . . , λn.
Alors, on peut définir un système fondamental de solutions :

X1 : t 7−→ eλ1tV1, . . . , Xn : t 7−→ eλntVn

Propriété 15 (système fondamental de solutions dans le cas où A est diagonalisable).

I Comme pour les équations différentielles, on vérifie que ces vecteurs conviennent avant d’invoquer la dimension de S0.

Remarques

1. A l’oral, c’est bien de savoir comment s’écrit un tel système fondamental de solutions, mais la plupart du temps, on
nous demandera d’effectuer la réduction afin d’obtenir un système différentiel équivalent par changement de
variable :

• si A est diagonalisable, alors il existe P ∈ GLn(K) telle que A = PDP−1, et ainsi :

X ′(t) = AX(t) +B(t)⇔ X ′(t) = PDP−1X(t) +B(t)⇔ (P−1X)′(t) = D(P−1X)(t) + P−1B(t)

En posant Y (t) = P−1X(t), cela équivaut à résoudre le système :

Y ′(t) = DY (t) + P−1B(t)

La matrice D étant diagonale, on obtient des équations différentielles plus faciles à résoudre.

• si A est trigonalisable, alors il existe P ∈ GLn(K) telle que A = PTP−1, et ainsi :

X ′(t) = AX(t) +B(t)⇔ X ′(t) = PTP−1X(t) +B(t)⇔ (P−1X)′(t) = T (P−1X)(t) + P−1B(t)

En posant Y (t) = P−1X(t), cela équivaut à résoudre le système :

Y ′(t) = TY (t) + P−1B(t)

La matrice T étant triangulaire, on obtient un système triangulaire d’équations différentielles plus faciles à résoudre.

2. Dans la méthode précédente, on pourra observer que si le système est homogène, alors le calcul de P−1 est inutile : en
effet, une fois Y obtenu, on a directement X = PY .
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Exemple 7 On considère la matrice A =

 1 0 2
0 1 0
2 0 1

 .

1. Justifier sans calcul que A est diagonalisable.

2. Déterminer les éléments propres de A, puis résoudre le système différentiel suivant :
x′ = x+ 2z
y′ = y
z′ = 2x+ z

.

x, y, z désignant trois fonctions de la variable t, dérivables sur R.
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