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Pour aller plus loin
Ce chapitre est très pratique car il nous livre des théorèmes de réduction pour les endomorphismes remarquables, à commencer
par les endomorphismes symétriques. On essaiera quand même de comprendre comment on construit les choses, des espaces
préhilbertiens en dimension quelconque au cas particulier des espaces euclidiens.
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1 Quelques rappels sur les espaces préhilbertiens

1.1 Retour sur les premières définitions et exemples fondamentaux

Définition Soit (E,+, .) un K-espace vectoriel.

• Si K = R, on rappelle qu’un produit scalaire sur E est une forme bilinéaire symétrique définie positive, c’est à dire une
application φ : E −→ R vérifiant :

∀(x, y) ∈ E2, φ(x, y) ∈ R
∀(x, x′, y, y′) ∈ E4, ∀ λ ∈ R, φ(λx+ x′, y) = λφ(x, y) + φ(x′, y) et φ(x, λy + y′) = λφ(x, y) + φ(x, y′)

∀(x, y) ∈ E2, φ(y, x) = φ(x, y) (symétrie classique)

∀x ∈ E, φ(x, x) ≥ 0 et φ(x, x) = 0⇔ x = 0

et dans ce cas, (E, φ) définit un espace préhilbertien réel.

• Si K = C, on rappelle qu’un produit scalaire sur E est une forme sesquilinéaire hermitienne définie positive, c’est à dire
une application φ : E −→ C vérifiant :

∀(x, y) ∈ E2, φ(x, y) ∈ C
∀(x, x′, y, y′) ∈ E4, ∀ λ ∈ C, φ(λx+ x′, y) = λφ(x, y) + φ(x′, y) et φ(x, λy + y′) = λφ(x, y) + φ(x, y′)

∀(x, y) ∈ E2, φ(y, x) = φ(x, y) (symétrie hermitienne)

∀x ∈ E, φ(x, x) ≥ 0 et φ(x, x) = 0⇔ x = 0

et dans ce cas, (E, φ) définit un espace préhilbertien complexe.

On appelle alors norme associée à ce produit scalaire la norme notée ‖.‖2 : E −→ R+ et définie par :

‖x‖2 =
√
φ(x, x)

On parle plus précisément de norme euclidienne associée si K = R ou de norme hermitienne associée si K = C.

Définition

• On appelle espace euclidien tout espace vectoriel réel de dimension finie et muni d’un produit scalaire.

• On appelle espace hermitien tout espace vectoriel complexe de dimension finie et muni d’un produit scalaire hermitien.

Remarques

1. En fonction des espaces considérés, il existe des produits scalaires plus ou moins usuels. Il ne faudra donc pas hésiter
si besoin à introduire ces produits scalaires... surtout si on travaille sur Kn, Kn[X], C0([a, b],K),Mn(K) ou encore sur
Mn,1(K) pour lequel on peut définir :

φ : (X,Y ) ∈Mn,1(K)2 7−→ X
T
Y =

n∑
i=1

xiyi

2. On rappelle quand même que la norme associée à un produit scalaire est une norme, grâce aux propriétés du produit
scalaire, mais aussi grâce à l’inégalité de Cauchy-Schwarz qui nous permet d’obtenir l’inégalité triangulaire :

∀(x, y) ∈ E2, |φ(x, y)| ≤ ‖x‖2.‖y‖2

3. Au programme de MP, on fait alors le choix de ne travailler que dans des espaces préhilbertiens réels.

Exemple 1 On considère `2 l’ensemble des suites réelles de carré sommable, c’est à dire :

`2 = {(un) ∈ RN ,
∑

u2
n converge}

1. (a) Etablir que pour tout (a, b) ∈ R2, ab ≤ a2 + b2

2
.

(b) Montrer alors que `2 est un sous-espace vectoriel de RN.

2. On note φ : (u, v) ∈ (`2)2 7−→
∑+∞
n=0 unvn.

Justifier que φ est bien définie sur (`2)2 et vérifier qu’elle définit un produit scalaire sur `2.

Remarque On essaiera de retenir cet exemple et de la même façon, on pourra considérer l’espace :

L∈(I,K) = {f : I −→ K,
∫
I

|f |2 converge}

Cela nous permet parfois d’ajouter un produit scalaire... A REDIGER UN PEU !
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Soit (E, φ) un espace préhilbertien réel. Alors, la bilinéarité du produit scalaire nous donne :

1. ∀ (x, y) ∈ E2,

{
‖x+ y‖2 2 = ‖x‖2 2 + 2φ(x, y) + ‖y‖2 2

‖x− y‖2 2 = ‖x‖2 2 − 2φ(x, y) + ‖y‖2 2

2. ∀ (x, y) ∈ E2, φ(x, y) =
1

4
(‖x+ y‖2 2 − ‖x− y‖2 2) (formule de polarisation)

3. ∀ (x, y) ∈ E2, 2(‖x‖2 2 + ‖y‖2 2) = ‖x+ y‖2 2 + ‖x− y‖2 2 (identité du parallélogramme)

Propriété 1 (identités remarquables).

I Il suffit de revenir à la définition de la norme euclidienne et on fera appel aux propriétés du produit scalaire.

Remarque Pour le reste du chapitre, on décide de simplifier les notations et on notera pour tout (x, y) ∈ E2,

φ(x, y) =< x, y >

1.2 Orthogonalité dans un espace préhilbertien réel

Définition Soit E un espace préhilbertien réel.

• On dit que deux vecteurs x et y appartenant à E sont orthogonaux, que l’on note x ⊥ y, si < x, y >= 0.
Plus généralement, on dit que deux parties A et B de E sont orthogonales, que l’on note A ⊥ B, si pour tout (a, b) ∈ A×B,
< a, b >= 0.

• Considérons alors (xi)i∈I une famille de vecteurs de E. On dit aussi que :

– la famille (xi) est orthogonale si pour tout (i, j) ∈ I2, i 6= j, < xi, xj >= 0.

– la famille (xi) est orthonormée ou orthonormale si pour tout (i, j) ∈ I2, < xi, xj >= δij =

{
0, si i 6= j

1, si i = j
.

Soit E un espace préhilbertien réel et considérons (x1, . . . , xp) une famille orthogonale de E. Alors, on a :

‖x1 + . . .+ xp‖22 = ‖x1‖22 + . . .+ ‖xp‖22

Théorème 2 (de Pythagore).

I C’est immédiat : il suffit d’utiliser la bilinéarité du produit scalaire.

Soit E un espace préhilbertien réel. Alors,

1. toute famille de vecteurs orthogonaux et non nuls est nécessairement libre.

2. toute famille de vecteurs orthonormés est nécessairement libre.

Propriété 3 (liberté et famille orthogonale).

I Le second point est un cas particulier du premier. Pour le premier point, on revient à l’étude de la liberté d’une sous-famille
finie de vecteurs orthogonaux et non nuls.

Soit E un espace préhilbertien réel et considérons (e1, . . . , ep) une famille libre de E. Alors, il existe une unique famille
orthonormale (e′1, . . . , e

′
p) telle que :{

∀ k ∈ J1, pK, V ect(e′1, . . . , e′k) = V ect(e1, . . . , ek)

∀ k ∈ J1, pK, < e′k, ek > > 0

Cette famille orthonormale est alors appelée l’orthonormalisée de Schmidt.

Théorème 4 (d’orthonormalisation de Gram-Schmidt).
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I On procède encore par récurrence sur p. Pour l’hérédité, on cherchera un nouveau vecteur e′p+1 combinaison linéaire de
ep+1, e

′
1, . . . , e

′
k.

Remarque Dans un espace de dimension finie, on peut donc toujours construire une base orthonormale, à condition de
connâıtre au moins une base de l’espace. Concrètement, en notant (ei) une base quelconque :

1. on pose e′1 = e1
||e1||

,

2. on construit alors f2 = e2− < e′1, e2 > .e′1, puis on pose e′2 = f2
||f2||

,

3. on construit alors f3 = e3− < e′1, e3 > .e′1− < e′2, e3 > .e′2, puis on pose e′3 = f3
||f3||

...

Et on itère ainsi le procédé jusqu’à obtenir la base orthonormée souhaitée.

Exemple 2 Dans E = R2[X], on définit le produit scalaire usuel < P,Q >=
∑2
k=0 P (k)Q(k).

Montrer que la base canonique n’est pas orthonormale pour ce produit scalaire, puis construire l’orthonormalisée de Schmidt
associée.

1. Tout espace euclidien possède une base orthornomée.

2. Toute famille orthonormée d’un espace euclidien peut être compléte en une base orthonormée de l’espace.

Corollaire 5 (deux conséquences du théorème d’orthonormalisation de Gram-Schmidt).

Soit E un espace euclidien, c’est à dire un espace préhilbertien réel qu’on suppose de dimension finie n ≥ 1. On note
B = (e1, . . . , en) une base orthonormée de E. Alors,

1. ∀ x ∈ E, x =
∑n
i=1 < ei, x > .ei

2. ∀ (x, y) ∈ E2, < x, y >=
∑n
i=1 xiyi = XTY avec X,Y les matrices colonnes associées à x et y dans la base (ei)

3. ∀ x ∈ E, ‖x‖2 =
√∑n

i=1 x
2
i =
√
XTX

Propriété 6 (expression du produit scalaire et de la norme dans un espace euclidien).

I A chaque fois, on décompose les vecteurs dans la base donnée : il suffit alors d’utiliser les propriétés du produit scalaire.

Remarque On essaiera de retenir que travailler en base orthonormée est très pratique. Par exemple, on obtient les com-
posantes d’un vecteur par simple produit scalaire sur les vecteurs de base... De cette façon, la matrice d’un endomorphisme
dans une base orthonormée B s’écrit alors :

MatB(u) = (< ei, u(ej) >)

2 Sous-espaces orthogonaux

2.1 Famille de sous-espaces orthogonaux et supplémentaire orthogonal

Définition Soit E un espace préhilbertien réel et considérons F1, . . . , Fp des sous-espaces vectoriels de E. On dit qu’ils constituent
une famille de sous-espaces orthogonaux si pour tout (i, j) ∈ J1, pK2, i 6= j,

Fi ⊥ Fj

Soit E un espace préhilbertien réel et considérons F1, . . . , Fp une famille de sous-espaces orthogonaux de E. Alors, on a :

F1 ⊕ . . .⊕ Fp

Propriété 7 (somme directe de sous-espaces orthogonaux).

I On revient à l’unique décomposition du 0E et on peut appliquer le théorème de Pythagore.

Définition Soit E un espace préhilbertien réel et considérons F1, . . . , Fp une famille de sous-espaces orthogonaux de E. On dit
encore que E se décompose en somme directe orthogonale si on a :

E = F1 ⊕ . . .⊕ Fp

et on pourra noter : E = F1

⊥
⊕ . . .

⊥
⊕ Fp.
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Exemple 3 Dans E = Mn(R), on note Sn(R) l’ensemble des matrices symétriques réelles et An(R) l’ensemble des matrices
antisymétriques réelles. On munit E du produit scalaire canonique :

< A,B >= tr(ATB)

1. Justifier rapidement que Sn(R) et An(R) sont des sous-espaces vectoriels de E.

2. Prouver alors que :

Mn(R) = Sn(R)
⊥
⊕An(R)

Soit E un espac epréhibertien réel et considérons F un sous-espace vectoriel de E.

1. Alors, l’ensemble {x ∈ E, ∀y ∈ F, x ⊥ y} est un sous-espace vectoriel fermé de E. Ce sous-espace est appelé
l’orthogonal de F et on le note F⊥.

2. En particulier, on a : {0}⊥ = E et E⊥ = {0}.

Propriété 8 (sous-espace orthogonal à un sous-espace vectoriel).

I Par équivalence, on montre que x ∈ F⊥ ⇔ x ∈ ∩y∈FKer(< ., y >), intersection de sous-espaces fermés. Pour le second
point, on procède par double inclusion : l’une est triviale, pour l’autre, il suffit de traduire l’orthogonalité.

Définition Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E. On dit que F admet un
supplémentaire orthogonal si on a la décomposition :

E = F
⊥
⊕ F⊥

Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E tel que :

E = F
⊥
⊕ F⊥

Alors, F⊥ admet à son tour un supplémentaire orthogonal, et on a (F⊥)⊥ = F .

Propriété 9 (dans le cas d’une décomposition à l’aide du supplémentaire orthogonal).

I On a immédiatement F ⊂ (F⊥)⊥, et il faudra soigner l’autre inclusion en utilisant la décomposition en somme directe
donnée.

Remarques

1. Attention, ces résultats sont souvent mal interprétés : rien ne dit que le supplémentaire orthogonal existe dans un
espace préhilbertien quelconque, et de la même façon, on n’a pas toujours (F⊥)⊥ = F ... Par contre, s’il existe, cette
dernière égalité est vraie !

2. Et si F = (F⊥)⊥, alors on obtient en particulier que F est fermé dans E.

Exemple 4 Dans E = C0([0, 1],R), on définit le produit scalaire :

< f, g >=

∫ 1

0

f(t)g(t) dt

et on pose F = {f ∈ E, f(0) = 0}.

1. Montrer que F est un sous-espace vectoriel de E, et établir que F⊥ = {0}.

2. En déduire que E 6= F
⊥
⊕ F⊥ et que F 6= (F⊥)⊥.

2.2 Projection orthogonale sur un sous-espace vectoriel de dimension finie
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Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E. On suppose de plus que F est de dimension
finie p ≥ 1. Alors, il admet un supplémentaire orthogonal de sorte que :

E = F
⊥
⊕ F⊥

Théorème 10 (d’existence du supplémentaire orthogonal).

I F et F⊥ sont toujours en somme directe. On se contente alors de montrer que E = F + F⊥ par analyse-synthèse.

Définition Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E de dimension finie p ≥ 1.

En particulier, E = F
⊥
⊕ F⊥ et ainsi :

∀x ∈ E, ∃!(y, z) ∈ F × F⊥, x = y + z

On appelle alors projection orthogonale sur F la projection pF sur F parallèlement à F⊥ et définie par pF (x) = y.
De plus, pF (x) est appelé le projeté orthogonal de x sur F .

Remarque De façon immédiate, la projection orthogonale est un projecteur : on parle même de projecteur orthogonal
et elle vérifie : {

pF ∈ L(E), pF ◦ pF = pF

Im(pF ) ⊥ Ker(pF )

Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E. On suppose de plus que F est de dimension
finie p ≥ 1 et notons y ∈ F . Alors,

y = pF (x)⇔ x− y ∈ F⊥

Propriété 11 (caractérisation du projeté orthogonal sur un sous-espace vectoriel de dimension finie).

I C’est immédiat, puisqu’on a toujours : x = y + (x− y).

Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E. On suppose de plus que F est de dimension
finie p ≥ 1. Alors, en notant B = (e1, . . . , ep) une base orthonormée de F , on a pour tout x ∈ E,

pF (x) =

p∑
i=1

< ei, x > .ei

Propriété 12 (expression du projeté orthogonal sur un sous-espace vectoriel de dimension finie).

I On applique la caractérisation précédente de sorte que x− y ∈ F⊥ ⇔ ∀i ∈ J1, pK, < x− y, ei >= 0.

Remarques

1. Si E désigne un espace euclidien, alors tous les sous-espaces vectoriels sont de dimension finie. On peut donc toujours
avoir une décomposition en somme directe orthogonale :

E = F
⊥
⊕ F⊥

et ainsi, en notant pF et pF⊥ les projections associées, il vient encore : idE = pF + pF⊥ .

2. On peut aller plus loin et en considérant F de dimension finie, on peut aussi définir la symétrie orthogonale par
rapport à F et de direction F⊥ de sorte que :

sF = 2pF − idE : x 7−→ 2y − (y + z) = y − z

En particulier, elle vérifie : {
sF ∈ L(E), sF ◦ sF = idE

Ker(sF − idE) ⊥ Ker(sF + idE)

Définition Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E de dimension finie p ≥ 1.
Sous réserve d’existence, on appelle distance de x ∈ E à F le nombre :

d(x, F ) = inf
y∈F
‖x− y‖2
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Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E de dimension finie p ≥ 1. Alors, la distance
de x à F est atteinte en un unique point de F et on a :

d(x, F ) = ‖x− pF (x)‖2 =
√
‖x‖2 2 − ‖pF (x)‖2 2

Théorème 13 (de minimisation).

I Dans un premier temps, on vérifie que ‖x− pF (x)‖2 est bien ce minimum, puis partant de x = pF (x) + x− pF (x), on ap-
plique le théorème de Pythagore pour justifier la valeur obtenue. Enfin, il ne faudra pas oublier de prouver l’unicité annoncée !

Exemple 5 Trouver trois réels (a, b, c) tels que :∫ 1

0

(ln(t)− c− bt− at2)2 dt soit minimale.

Soit E un espace préhilbertien réel.

1. Si (e1, . . . , ep) désigne une famille orthonormée de E, alors on a pour tout x ∈ E,

p∑
i=1

< ei, x >
2≤ ‖x‖2 2

2. Si on suppose de plus que la famille (ek)k∈N est une famille orthonormée totale, c’est à dire telle que E = V ect((ek)k∈N),
alors en considérant x ∈ E, la série

∑
< ek, x >

2 converge et :

+∞∑
k=0

< ek, x >
2= ‖x‖2 2 (égalité de Parseval-Bessel)

Théorème 14 (inégalité de Bessel).

I Pour le premier résultat, on rappellera la décomposition x = pF (x) + x − pF (x). Pour le second, on procèdera en deux
temps : on prouve d’abord la convergence avant d’essayer de contrôler la différence entre la limite et les sommes partielles.

Remarque Cette dernière égalité n’est pas au programme de MP, mais elle est très pratique quand on la prolonge aux espaces
préhilbertiens complexes. En particulier, si on se place dans l’espace vectoriel des fonctions continues et 2π-périodiques à
valeurs complexes, et muni du produit scalaire :

< f, g >=
1

2π

∫ π

−π
f(t)g(t) dt

Alors, on peut montrer que la famille (en = t 7−→ eint)n∈Z est une famille orthonormée totale sur E. La série de fonctions∑
n∈Z < en, f > .en est alors appelée série de Fourier, et d’après la preuve précédente, elle converge au sens de la norme

‖.‖2 et on peut réécrire l’égalité de Parseval :

+∞∑
k=−∞

|ck(f)|2 =
1

2π

∫ π

−π
|f(t)|2 dt

avec ∀k ∈ Z, ck(f) =< ek, f >=
1

2π

∫ π

−π
f(t)e−ikt dt

En adaptant un peu le choses, on montre que cette formule est encore vraie pour des fonctions continues par morceaux,
2π-périodiques et régularisées aux points de discontinuité... Ainsi, en choisissant f la fonction 2π-périodique vérifiant pour
tout x ∈]− π, π[, f(x) = x, on retrouve directement l’égalité :

ζ(2) =

+∞∑
k=1

1

k2
=
π2

6
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3 Endomorphismes remarquables d’un espace euclidien

Pour finir, on se place dans E un espace euclidien de dimenion finie n ≥ 1, et ainsi pour tout sous-espace vectoriel F :

E = F
⊥
⊕ F⊥ ⇒ dim(F⊥) = n− dim(F )

3.1 Définition et propriétés de l’adjoint d’un endomorphisme

Soit E un espace euclidien, et considèrons φ une forme linéaire sur E. Alors, il existe un unique vecteur a ∈ E tel que :

∀x ∈ E, φ(x) = < x, a >

En particulier, l’application f : a 7−→< ., a > désigne un isomorphisme de E sur E∗, et ainsi toute forme linaire peut être vu
comme un produit scalaire relatif à un unique vecteur associé.

Théorème 15 (de représentation de Riesz).

I On introduit une base orthonormée de E et on procède par analyse-synthèse.

Soit E un espace euclidien et considérons u ∈ L(E), alors il existe un unique endomorphisme noté u∗ tel que :

∀(x, y) ∈ E2, < u(x), y >=< x, u∗(y) >

Cet endomorphisme est alors appelé l’opérateur adjoint de u ou tout simplement l’adjoint de u.

Théorème 16 (existence et unicité de l’adjoint d’un endomorphisme).

I On note à y fixé, φy : x 7−→< u(x), y > et on invoque le théorème de représentation de Riesz. Dans un deuxième temps,
on prouve alors que u∗ : y 7−→ ay est bien un endomorphisme.

Exemple 6 On se place dans E =Mn(R) qu’on munit du produit scalaire canonique :

< M,N >= tr(MTN)

et on fixe A ∈ E.

1. On définit alors f : X 7−→ [A,X] = AX −XA. Justifier que f ∈ L(E).

2. Déterminer alors f∗ l’adjoint de f .

3. On suppose de plus que A ∈ Sn(R). Montrer que f∗ = f .

Soit E un espace euclidien et considérons u, v ∈ L(E), alors :

1. pour tout λ ∈ R, (λu+ v)∗ = λu∗ + v∗.

2. id∗E = idE et (u∗)∗ = u

3. (v ◦ u)∗ = u∗ ◦ v∗

Propriété 17 (de l’adjoint).

I A chaque fois, il suffit de revenir à l’égalité via le produit scalaire, afin d’identifier les résultats.

Soient E un espace euclidien et u ∈ L(E) qu’on suppose inversible, alors u∗ est aussi inversible, et on a (u∗)−1 = (u−1)∗.

Corollaire 18 (de l’adjoint d’un automorphisme).

I Partant de u ◦ u−1 = idE, il suffit de composer par ∗.
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Soit E un espace euclidien et considérons u ∈ L(E). Alors, en notant B une base orthonormée de E, on a toujours :

MatB(u∗) = MatB(u)T

Et en particulier, le rang, la trace, le déterminant et le polynôme caractéristique étant des invariants de similitude :

rg(u∗) = rg(u), tr(u∗) = tr(u), det(u∗) = det(u) et χu∗ = χu ⇔ Sp(u∗) = Sp(u)

Propriété 19 (matrice de l’ajoint en base orthonormée).

I On revient à la définition de la matrice d’une telle application, et on rappellera que les composantes dans une telle base,
s’obtiennent par simple produit scalaire sur les vecteurs de la base. La suite est immédiate par invariant de similitude.

Remarque Encore une fois, on essaiera de comprendre que toutes ces propriétés nous permettent en fait de connâıtre
l’opérateur adjoint, à partir du seul endomorphisme u.

Soit E un espace euclidien et considérons u ∈ L(E). Alors, on a :

Ker(u∗) = Im(u)⊥ et Im(u∗) = Ker(u)⊥

Propriété 20 (noyau et image de l’adjoint).

I Pour la première égalité, on peut raisonner par équivalence. Pour la seconde, on pourra proposer une inclusion et revenir
à l’égalité des dimensions.

Soit E un espace euclidien et considérons u ∈ L(E), et F un sous-espace vectoriel de E. Alors, F est stable par u si et
seulement si F⊥ est stable par u∗.

Propriété 21 (stabilité de l’orthogonal par l’adjoint).

I On procède par double implication : pour le sens réciproque, on pourra invoquer le caractère involutif des opérations ∗ et
⊥ en dimension finie.

3.2 Cas particulier des endomorphismes symétriques

Définition Soit E un espace euclidien et considérons u ∈ L(E). On dit que u est autoadjoint ou désigne un endomorphisme
symétrique si u∗ = u, c’est à dire que :

∀(x, y) ∈ E2, < u(x), y >=< x, u(y) >

Exemple 7 Dans un espace euclidien E, on considère F un sous-espace vectoriel de sorte que E = F
⊥
⊕ F⊥, et on définit pF et

sF la projection orthogonale sur F et la symétrie orthogonale par rapport à F .

Montrer que pF et sF sont des endomorphismes symétriques, et ainsi p∗F = pF et s∗f = sF .

Soit E un espace euclidien et considérons u ∈ L(E). Alors, en notant B une base orthonormée de E, u est un endomorphisme
symétrique si et seulement si :

MatB(u) = MatB(u)T

c’est à dire que sa matrice en base orthonormée est symétrique réelle.

Propriété 22 (caractérisation matricielle d’un endomorphisme symétrique).

I On peut travailler par équivalence en utilisant l’isomorphisme canonique u 7−→MatB(u), avec la base B donnée.
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Soit E un espace euclidien et notons S(E) l’ensemble des endomorphismes symétriques sur E. Alors, S(E) est un sous-espace
vectoriel de L(E), et on en déduit à l’aide de isomorphisme canonique à base orthonormée fixée u 7−→MatB(u), que :

dim(S(E)) = dim(Sn(R)) =
n(n+ 1)

2

Corollaire 23 (espace vectoriel des endomorphismes symétriques).

Soit E un espace euclidien et considérons u ∈ S(E). Alors,

1. l’endomorphisme induit u sur un sous-espace stable F ⊂ E est toujours symétrique.

2. pour tout sous-espace stable F , alors F⊥ est encore stable par u.

Propriété 24 (immédiate des endomorphismes symétriques).

I C’est immédiat. Le second point découle des propriétés de l’adjoint avec ici u∗ = u.

Soit E un espace euclidien et considérons u ∈ S(E). Alors,

1. le spectre de u est réel et ainsi, Sp(u) ⊂ R.

2. u possède au moins une valeur propre réelle et ainsi, 1 ≤ Card(Sp(u)) ≤ n.

3. en notant Eu(λ1), . . . , Eu(λp) les sous-espaces propres associés à des valeurs propres distinctes de u, alors ils sont deux
à deux orthognaux, et ils sont donc toujours en somme directe.

Propriété 25 (éléments propres d’un endomorphisme symétrique).

I Pour le premier point, on se plonge dans Mn(C) et on pourra travailler sur l’égalité MatB(u)X = λiX après avoir fixé
une base orthonormée de E. Le second point est immédiat et pour le dernier, on reviendra simplement à la définition de
l’orthogonalité.

Remarque Toutes ces propriétés sont importantes et on essaiera de s’en souvenir pour les oraux... ce sont des questions
faciles pour l’examinateur, et en plus, ce sont ces propriétés qui nous livrent le théorème spectral !

Soit E un espace euclidien et considérons u ∈ S(E). Alors, il existe une base de vecteurs propres orthonormés B dans laquelle
MatB(u) est diagonale. On dit que u est orthodiagonalisable.
Et ainsi, plus généralement, pour toute matrice symétrique réelle S ∈ Sn(R), il existe P ∈ On(R) telle que :

S = PDPT avec D une matrice diagonale à coefficients réels

Théorème 26 (spectral).

I On note F = F1 ⊕ . . . ⊕ Fp de sorte que E = F
⊥
⊕ F⊥. En raisonnant par l’absurde, on montre que E = F et ainsi, on

pourra choisir une base adaptée de vecteurs propres. Pour le second point, il suffit de considérer l’endomorphisme symétrique
u canoniquement associée dans la base canonique.

Remarques

1. Attention, ce résultat n’est vrai que pour les matrices symétriques réelles. Par exemple, on peut considérer la matrice :

M =

(
i 1
1 −i

)
∈ S2(C)

qui est nilpotente, donc de spectre nul... Elle ne peut pas être diagonalisable, car elle serait égale à la matrice nulle.

2. Si on souhaite ortho-diagonaliser une matrice symétrique réelle, on procèdera de façon très classique, en cherchant
d’abord une base de vecteurs propres, avant de l’orthonormaliser à l’aide du principe d’orthonormalisation de
Gram-Schmidt.

3. Si A et B désignent deux matrices symétriques réelles telles que AB = BA, alors elles sont co-orthodiagonalisables.
En effet, on peut adapter la preuve de la codiagonalisation et choisir une base de réduction commune qui sera or-
thonormée de sorte que :

∃ P ∈ On(R), A = PD1P
T et B = PD2P

T
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Exemple 8 On considère la matrice A =

2 1 0
1 2 1
0 1 2

.

1. Justifier que A est diagonalisable, puis déterminer une base orthonormale dans laquelle A est diagonale.

2. Calculer alors exp(A) =
∑+∞
k=0

Ak

k!
.

Définition Soit A ∈ Sn(R).

• On dit enfin que A est positive si pour tout X ∈ Mn,1(R), XTAX ≥ 0, et on note S+
n (R) l’ensemble des matrices

symétriques réelles positives.

• On dit enfin que A est définie positive si pour tout X ∈Mn,1(R),{
XTAX ≥ 0 (positive)

XTAX = 0⇒ X = 0 (définie)

et on note S++
n (R) l’ensemble des matrices symétriques réelles définies positives.

Soit A ∈ Sn(R). Alors, on a les caractérisations suivantes :

1. A ∈ S+
n (R)⇔ ∀ λ ∈ Sp(A), λ ≥ 0

2. A ∈ S++
n (R)⇔ ∀ λ ∈ Sp(A), λ > 0

Propriété 27 (caractérisation des matrices symétriques positives et définies positives).

I A chaque fois, on raisonne par double implication : le sens direct est immédiat, car il suffit de présenter un vecteur propre
associé. Pour le sens réciproque, on pourra évidemment invoquer le théorème spectral.

Remarque Attention, on peut aussi adapter ces notions aux endomorphismes et ainsi, si u ∈ S(E) et B une base or-
thonormée, on dit encore que :

• u est positif si pour tout x ∈ E,
< u(x), x >≥ 0⇔ XTMatB(u)X ≥ 0

et on retiendra que u est positif MatB(u) ∈ S+
n (R)⇔ ∀ λ ∈ Sp(u), λ ≥ 0.

• u est défini positif si pour tout x ∈ E,{
< u(x), x >≥ 0

< u(x), x >= 0⇒ x = 0
⇔

{
XTMatB(u)X ≥ 0

XTMatB(u)X = 0⇒ X = 0

et on retiendra que u est défini positif MatB(u) ∈ S++
n (R)⇔ ∀ λ ∈ Sp(u), λ > 0.

3.3 Cas particulier des automorphismes orthogonaux

Définition Soit M ∈Mn(R). On rappelle que M est dite orthogonale si M est inversible, et son inverse est M−1 = MT .
On appelle alors groupe orthogonal le groupe (On(R),×) définie par :

On(R) = {M ∈ GLn(R), M−1 = MT }

Remarques

1. En particulier, si M ∈ On(R), alors MTM = In, c’est à dire qu’en notant C1, . . . , Cn les vecteurs colonnes de M , on a
pour tout (i, j) ∈ J1, nK2,

[MTM ]ij = δij ⇔ CTi Cj = δij

Autrement dit, M ∈ On(R) si et seulement si les vecteurs colonnes constituent une base orthonormée de Mn1(R).
C’est même pour cela que dans le théorème spectral, la matrice de passage P est orthogonale de sorte que :

S = PDPT avec D une matrice diagonale à coefficients réels

2. Si M ∈ On(R), on a en particulier det(M) = ±1. On appelle alors groupe spécial orthogonal l’ensemble noté
SOn(R) et défini par :

SOn(R) = {M ∈ On(R), det(M) = 1}
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3. Bien entendu, on pourra vérifier que On(R) et SOn(R) portent bien leur nom : ainsi, si on revient à la caractérisation
des sous-groupes, on montre qu’il s’agit là de deux sous-groupes multiplicatifs de GLn(R).

Soit n ∈ N∗, alors On(R) et SOn(R) sont des parties fermées et bornées de Mn(R) : elles sont donc compactes.

Corollaire 28 (On(R) et SOn(R) sont des parties compactes).

I La remarque précédente nous donne à la fois le fait que c’est borné, puisque les vecteurs (Ci) sont unitaires et elles sont
fermées, en tant qu’image réciproque par une application continue de {In} ou de {1}.

Définition Soit E un espace euclidien et considérons u ∈ L(E). On dit que u désigne un automorphisme orthogonal si u est
inversible et u∗ = u−1, c’est à dire que :

∀(x, y) ∈ E2, < u(x), y >=< x, u−1(y) >

et on peut encore noter O(E) l’ensemble des automorphismes orthogonaux sur E.

Soit E un espace euclidien et considérons u ∈ L(E). Alors, en notant B une base orthonormée de E, u est un automorphisme
orthogonal si et seulement si :

MatB(u−1) = MatB(u)T , ce qui s’écrit encore (MatB(u))−1 = MatB(u)T

c’est à dire que sa matrice en base orthonormée est orthogonale.

Propriété 29 (caractérisation matricielle d’un automorphisme orthogonal).

I On peut travailler par équivalence en utilisant l’isomorphisme canonique u 7−→MatB(u), avec la base B donnée.

Soit E un espace euclidien et considérons u ∈ L(E). Alors, en notant B une base orthonormée de E, on en déduit que u est
un automorphisme orthogonal si et seulement l’image de B par u est encore une base orthonormée de E.

Corollaire 30 (caractérisation d’un automorphisme orthogonal à l’aide de l’image d’une BON).

Soit E un espace euclidien et considérons u ∈ L(E). Alors, les assertions suivantes sont équivalentes :

1. u est un automorphisme orthogonal.

2. pour tout x ∈ E, ‖u(x)‖2 = ‖x‖2 et ainsi, u conserve la norme.

3. pour tout (x, y) ∈ E2, < u(x), u(y) >=< x, y > et ainsi, u conserve le produit scalaire.

On dit aussi que u est une isométrie vectorielle.

Corollaire 31 (caractérisation d’un automorphisme orthogonal par conservation de la norme et du produit scalaire).

I On procède par cycle et on n’hésitera pas à exploiter le résultat précédent pour prouver la dernière implication.

Remarques

1. On fera attention au vocabulaire : si pF 6= ±idE , alors la projection orthogonale n’est pas un automorphisme orthogonal.
Par contre, la symétrie orthogonale sF est bien un automorphisme orthogonal.

2. De plus, si u est une isométrie vectorielle, alors pour toute valeur propre λ ∈ Sp(u) et en notant x un vecteur popre
associé :

‖u(x)‖2 = ‖x‖2 ⇒ |λ|‖x‖2 = ‖x‖2 ⇔ |λ| = 1

3. En fonction des exercices, on pourra encore jouer sur la dualité entre O(E) et On(R) et ainsi, si P ∈ On(R), alors P
peut être vue comme la matrice d’une isométrie vectorielle de Rn dans la base canonique et :

• les vecteurs colonnes désignent une base orthonormée de Mn1(R),

• on a toujours ‖PX‖2 = ‖X‖2.
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Soit E un espace euclidien et considérons u un automorphisme orthogonal de E. Alors,

1. l’endomorphisme induit u sur un sous-espace stable F ⊂ E est toujours orthogonal.

2. pour tout sous-espace stable F , alors F⊥ est encore stable par u.

Propriété 32 (immédiate des automorphismes orthogonaux).

I C’est immédiat. Pour le second point, on peut encore utiliser les propriétés de l’adjoint avant de vérifier que u(F⊥) ⊂ F⊥.

Remarque En fait, on distinguera ici les automorphismes orthogonaux directs de déterminant +1 et les automor-
phismes orthogonaux indirects de déterminant −1, et on essaiera de comprendre la nature de ces automorphismes en
petite dimension, avant d’admettre leur réduction par blocs en dimension quelconque.

Soit u un automorphisme orthogonal du plan euclidien. Alors en notant B une base orthonormée, on a :
M = MatB(u) ∈ O2(R) et ainsi :

• det(M) = 1⇒ il existe θ ∈ R tel que M =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
︸ ︷︷ ︸

R(θ)

.

• det(M) = −1⇒ il existe θ ∈ R tel que M =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
︸ ︷︷ ︸

S(θ)

.

Propriété 33 (automorphismes orthogonaux en dimension 2).

I On traduit simplement l’appartenance au groupe orthogonal. On pourra alors discuter suivant la valeur du déterminant.

Remarque En fait, dans le plan euclidien muni d’une base orthonormée directe, R(θ) représente la rotation d’angle θ [2π],
et S(θ) désigne une réflexion, c’est à dire une symétrie orthogonale par rapport à un hyperplan.

On en déduit alors :

1. SO2(R) est un groupe multiplicatif commutatif avec pour tout (θ, θ′) ∈ R2, R(θ)×R(θ′) = R(θ + θ′) = R(θ′)×R(θ).

2. L’application φ : θ 7−→ R(θ) est une application surjective de R vers SO2(R).

Corollaire 34 (cas particulier des rotations du plan euclidien).

Soit u un automorphisme orthogonal de l’espace euclidien de dimension 3. Alors il existe une base orthonormée B et un réel
θ tels que :

MatB(u) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 ±1


En particulier, le signe du déterminant nous permet d’identifier la dernière valeur.

Propriété 35 (automorphismes orthogonaux en dimension 3).

I Le polynôme caractéristique χu étant de degré 3, il existe au moins une valeur propre réelle λ = ±1. En notant e3 un
vecteur propre associé, on travaille alors sur F = e⊥3 de sorte que uF ∈ O2(R).

Remarque Dans le cas particulier où u ∈ SO3(R), alors il existe une base orthonormée dans laquelle :

MatB(u) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


Cela représente encore la rotation d’angle θ [2π] et d’axe la droite invariante donnée par Ker(u− idE).
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Soit u un automorphisme orthogonal de l’espace euclidien de dimension n ≥ 1. Alors, on admet qu’on peut généraliser le
travail précédent et ainsi, il existe une base orthonormée B dans laquelle la matrice de u est diagonale par blocs avec :

• des blocs carrés de taille 1 de la forme (±1)

• des blocs carrés de taille 2 de la forme

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, avec θ 6= 0 [π].

Théorème 36 (automorphismes orthogonaux en dimension quelconque).

4 Quelques applications classiques

4.1 Racine carrée d’un endomorphisme symétrique et positif

Exemple 9 Soit E un espace euclidien et f un endomorphisme symétrique et positif de E.

1. Montrer qu’il existe un unique endomorphisme g symétrique et positif tel que :

g2 = f

2. En raisonnant par existence-unicité, on peut directement travailler avec les matrices et obtenir le même résultat :

∀S ∈ S+
n (R), ∃!R ∈ S+

n (R), R2 = S

Cette matrice R est appelé racine carrée de S. Justifier alors que R désigne un polynôme en S.

4.2 Décomposition d’Iwasawa et inégalité d’Hadamard

Exemple 10 Soit M ∈ GLn(R).

1. Montrer qu’il existe un unique couple (O, T ) tel que :

M = OT

avec O ∈ On(R) et T une matrice triangulaire supérieure à coefficients diagonaux strictement positifs.
Pour l’existence, on pourra noter u l’endomorphisme de Rn canoniquement associé à M et étudier la famille (u(ei)).

2. On note C1, . . . , Cn les colonnes de M . Etablir alors que :

|det(M)| ≤ ‖C1‖2 . . . ‖Cn‖2

4.3 Décomposition polaire d’une matrice donnée et sous-groupes compacts de GLn(R)
Exemple 11

1. Soit M ∈Mn(R). Montrer que MTM est symétrique et à valeurs propres positives.

2. On suppose de plus que M est inversible. Montrer qu’il existe un unique couple (O,S) ∈ On(R)× S++
n (R) tel que :

M = OS

3. Considérons G un sous-groupe compact de (GLn(R),×) contenant On(R), et A ∈ G.

(a) On note S la partie symétrique de A dans sa décomposition polaire. Justifier que pour tout k ∈ Z, Sk ∈ G.

(b) Montrer que 1 est la seule valeur propre de S, puis établir que G = On(R).

Autrement dit, au sens de l’inclusion, On(R) désigne le plus grand sous-groupe compact de (GLn(R),×) : on dit aussi que On(R)
est un sous-groupe compact maximal.
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