Chapitre 11

Endomorphismes remarquables d’un espace euclidien

On revient sur les espaces préhilbertiens, avec notamment la notion d’orthogonalité.
Cela nous permet sous certaines conditions d’obtenir une décomposition naive de
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symétriques et orthogonaux.

1 uelques rappels sur les espaces preéhilbertiens 2
1.1 Retour sur les premieres definitions et exemples fondamentaux| . . . . 2
1.2 rthogonalité dans un espace préhilbertien réell . . . . . . .. . ... 3

2 Sous-espaces orthogonaux| 4

.1 Famille de sous-espaces orthogonaux et supplémentaire orthogonal| . . 4

2.2 rojection orthogonale sur un sous-espace vectoriel de dimension finie 5

3  Endomorphismes remarquables d’un espace euclidie 8
. 1 ¢ 8
------------ 9
3.3 as particulier des automorphismes orthogonaux| . . . . . . . ... .. 11

4 Quelques applications classiques| 14
4.1 Racine carrée d'un endomorphisme symetrique et positif] . . . . . . . . 14
@2 ecomposition d’'Iwasawa et inégalité adamard| . . ... ... ... 14

Z.S l5ecompos1t10n polalre d’une matrice donnée et sous-groupes compacts
de GEnI]RH .................................. 14

Programmes 2022

Pour aller plus loin

Ce chapitre est tres pratique car il nous livre des théorémes de réduction pour les endomorphismes remarquables, & commencer
par les endomorphismes symétriques. On essaiera quand méme de comprendre comment on construit les choses, des espaces
préhilbertiens en dimension quelconque au cas particulier des espaces euclidiens.
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1 Quelques rappels sur les espaces préhilbertiens

1.1 Retour sur les premiéres définitions et exemples fondamentaux

Définition Soit (F, +,.) un K-espace vectoriel.

e Si K = R, on rappelle qu'un produit scalaire sur F est une forme bilinéaire symétrique définie positive, c’est a dire une
application ¢ : E — R vérifiant :
Y(z,y) € E?, ¢(z,y) €R
V(z, 2’ y,y') € B, YA ER, ¢(A\z + ', y) = Ap(z,y) + ¢(z',y) et d(z, Ay +¢) = Ap(z,y) + d(z,y)
Y(z,y) € E?, ¢(y,z) = ¢(z,y) (symétrie classique)
Ve € E, ¢(x,z) >0et ¢(z,2) =0 2=0

et dans ce cas, (E, ¢) définit un espace préhilbertien réel.

e Si K = C, on rappelle qu'un produit scalaire sur E est une forme sesquilinéaire hermitienne définie positive, c’est a dire
une application ¢ : E — C vérifiant :

z,y) € E?, ¢(z,y) €C

(
V(z,2',y,y") € E*, VA EC, oAz + ', y) = Ao(z,y) + ¢(2',y) et d(z, \y + ') = Ap(z,y) + ¢(z,y)

Y(z,y) € E?, ¢(y,x) = ¢(x,y) (symétrie hermitienne)
Ve € E, ¢(z,2) > 0et ¢p(z,2) =0z =0
et dans ce cas, (F, ¢) définit un espace préhilbertien complexe.

On appelle alors norme associée a ce produit scalaire la norme notée ||.||2 : E — R4 et définie par :

[z]l2 = v/ p(z, x)

On parle plus précisément de norme euclidienne associée si K = R ou de norme hermitienne associée si K = C.

Définition

e On appelle espace euclidien tout espace vectoriel réel de dimension finie et muni d’un produit scalaire.

e On appelle espace hermitien tout espace vectoriel complexe de dimension finie et muni d’un produit scalaire hermitien.

Remarques

1. En fonction des espaces considérés, il existe des produits scalaires plus ou moins usuels. Il ne faudra donc pas hésiter
si besoin & introduire ces produits scalaires... surtout si on travaille sur K", K, [X], C°([a, b], K), M, (K) ou encore sur
My, 1(K) pour lequel on peut définir :

¢ (X,Y) e Mur(K)? = X' Y = Ty,

i=1

2. On rappelle quand méme que la norme associée & un produit scalaire est une norme, grace aux propriétés du produit
scalaire, mais aussi grace a I'inégalité de Cauchy-Schwarz qui nous permet d’obtenir 'inégalité triangulaire :

V(z,y) € E%, |(z,y)| < |lz[l2-]yll2

3. Au programme de MP, on fait alors le choix de ne travailler que dans des espaces préhilbertiens réels.

Exemple 1 On considére ¢2 ensemble des suites réelles de carré sommable, c’est & dire :

= {(un) € RN, Zui converge}

. 2 a2 + b2
1. (a) Etablir que pour tout (a,b) € R*, ab < .

(b) Montrer alors que £? est un sous-espace vectoriel de RY.

2. On note ¢ : (u,v) € (£2)% — 312 upvy.
Justifier que ¢ est bien définie sur (¢2)? et vérifier qu’elle définit un produit scalaire sur 2.

Remarque On essaiera de retenir cet exemple et de la méme fagon, on pourra considérer I’espace :
LK) ={f:1 —K, /|f|2 converge}
I

Cela nous permet parfois d’ajouter un produit scalaire... A REDIGER UN PEU !
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{Propriété 1 (identités remarquables).}

Soit (E, ¢) un espace préhilbertien réel. Alors, la bilinéarité du produit scalaire nous donne :

lz+yll2* = llzll2? + 2¢(x, ) + lyll2*

1. V (z,y) € E?,
lz = ylla? = llzll2? = 2¢(z,) + lyll2

1
2. Y (z,y) € B2, ¢(x,y) = Z(Hx +yll2? = |z —yll2?) (formule de polarisation)

3.V (z,y) € E?, 2(||lzll2® + lyll2®) = [lz + yll2> + |lz — yll2> (identité du parallélogramme)

» [l suffit de revenir a la définition de la norme euclidienne et on fera appel auz propriétés du produit scalaire.
Remarque Pour le reste du chapitre, on décide de simplifier les notations et on notera pour tout (z,y) € E?,

Pz, y) =< =,y >

1.2 Orthogonalité dans un espace préhilbertien réel

Définition Soit E un espace préhilbertien réel.

e On dit que deux vecteurs x et y appartenant a F sont orthogonaux, que l'on note xz L y, si < z,y >= 0.
Plus généralement, on dit que deux parties A et B de E sont orthogonales, que ’on note A L B, si pour tout (a,b) € Ax B,
<a,b>=0.

e Considérons alors (z;);er une famille de vecteurs de E. On dit aussi que :

— la famille (x;) est orthogonale si pour tout (4,5) € I?,i # j, < x;,x; >= 0.

0, sii#j
1, sii=j

— la famille (x;) est orthonormée ou orthonormale si pour tout (4,7) € I?, < x;,x; >= 6;j = {

{Théor‘eme 2 (de Pythagore).]

Soit E un espace préhilbertien réel et considérons (z1,...,x,) une famille orthogonale de E. Alors, on a :

&1+ ...+ zpl2 = llzal3 + - .. + |23

» C’est immédiat : il suffit d’utiliser la bilinéarité du produit scalaire.

{Propriété 3 (liberté et famille orthogonale).]

Soit E un espace préhilbertien réel. Alors,

1. toute famille de vecteurs orthogonaux et non nuls est nécessairement libre.

2. toute famille de vecteurs orthonormés est nécessairement libre.

» Le second point est un cas particulier du premier. Pour le premier point, on revient a l’étude de la liberté d’une sous-famille
finie de vecteurs orthogonauz et non nuls.

{Théor‘eme 4 (d’orthonormalisation de Gram—Schmidt).}

Soit E un espace préhilbertien réel et considérons (e1,...,ep) une famille libre de E. Alors, il existe une unique famille
orthonormale (ef, ..., e) telle que :

V ke [1,p], Vect(el,...,e,) = Vect(er, ..., ek)
Vkel[l,p], <eyex>>0

Cette famille orthonormale est alors appelée 'orthonormalisée de Schmidt.
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» On procéde encore par récurrence sur p. Pour Uhérédité, on cherchera un nouveau vecteur e,y combinaison linéaire de
/ !

€p+1,€15-..,€f-

Remarque Dans un espace de dimension finie, on peut donc toujours construire une base orthonormale, & condition de

connaitre au moins une base de 'espace. Concrétement, en notant (e;) une base quelconque :

€1
[lexl]”

!/
1. on pose e} =

2. on construit alors fo = ea— < €}, e2 > .e}, puis on pose €5 = ng,
3. on construit alors f3 = e3— < €},e3 > .l — < e5,e3 > .eh, puis on pose e = H}EH

Et on itére ainsi le procédé jusqu’a obtenir la base orthonormée souhaitée.

Exemple 2 Dans E = Ry[X], on définit le produit scalaire usuel < P,Q >= >"7_, P(k)Q(k).
Montrer que la base canonique n’est pas orthonormale pour ce produit scalaire, puis construire ’orthonormalisée de Schmidt
associée.

{Corollaire 5 (deux conséquences du théoreme d’orthonormalisation de Gram-Schmidt).}

1. Tout espace euclidien posseéde une base orthornomée.

2. Toute famille orthonormée d’un espace euclidien peut étre compléte en une base orthonormée de ’espace.

{Propriété 6 (expression du produit scalaire et de la norme dans un espace euclidien).]

Soit E un espace euclidien, c’est a dire un espace préhilbertien réel qu’on suppose de dimension finie n > 1. On note
B = (e1,...,en) une base orthonormée de E. Alors,

lL.VzeE =37 <e,z>.e

2.V (z,y) € E? <z,y>= > Ty = XTY avec X,Y les matrices colonnes associées & = et y dans la base (eq)

3.Vz €L, |z =2, 27 =VXTX

» A chaque fois, on décompose les vecteurs dans la base donnée : il suffit alors d’utiliser les propriétés du produit scalaire.

Remarque On essaiera de retenir que travailler en base orthonormée est trés pratique. Par exemple, on obtient les com-
posantes d’un vecteur par simple produit scalaire sur les vecteurs de base... De cette fagon, la matrice d’'un endomorphisme
dans une base orthonormée B s’écrit alors :

Matg(u) = (< e;,u(e;) >)

2 Sous-espaces orthogonaux

2.1 Famille de sous-espaces orthogonaux et supplémentaire orthogonal

Définition Soit E un espace préhilbertien réel et considérons Fi, ..., F, des sous-espaces vectoriels de E. On dit qu’ils constituent
une famille de sous-espaces orthogonaux si pour tout (4,5) € [1,p]?,i # J,

F, L F

{Propriété 7 (somme directe de sous-espaces orthogonaux) ]

Soit E un espace préhilbertien réel et considérons Fi, ..., F), une famille de sous-espaces orthogonaux de E. Alors, on a :

F1@,,.@Fp

» On revient a l'unique décomposition du Og et on peut appliquer le théoréme de Pythagore.

Définition Soit E un espace préhilbertien réel et considérons Fi, ..., F, une famille de sous-espaces orthogonaux de F. On dit
encore que F se décompose en somme directe orthogonale si on a :

E=F®...0F

1 n
et on pourra noter : £ =F; & ... F),.
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Exemple 3 Dans E = M,(R), on note S,(R) I’ensemble des matrices symétriques réelles et A, (R) l’ensemble des matrices
antisymétriques réelles. On munit £ du produit scalaire canonique :

< A, B >=tr(A"B)
1. Justifier rapidement que S, (R) et A, (R) sont des sous-espaces vectoriels de E.

2. Prouver alors que :

Ma(R) = Sn(R) & An(R)

{Propriété 8 (sous-espace orthogonal & un sous-espace vectoriel).}

Soit E un espac epréhibertien réel et considérons F' un sous-espace vectoriel de E.

1. Alors, l'ensemble {x € E, Yy € F, © L y} est un sous-espace vectoriel fermé de E. Ce sous-espace est appelé
l'orthogonal de F et on le note F*.

2. En particulier, on a : {0}* = E et B+ = {0}.

» Par équivalence, on montre que & € Ft < ¢ € NyerKer(< .,y >), intersection de sous-espaces fermés. Pour le second
point, on procéde par double inclusion : l'une est triviale, pour l'autre, il suffit de traduire l’orthogonalité.

Définition Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E. On dit que F' admet un|
supplémentaire orthogonal si on a la décomposition :

€L
E=F3F*

{Propriété 9 (dans le cas d’une décomposition a l’aide du supplémentaire orthogonal).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E tel que :
1L
E=F®F*

Alors, F+ admet & son tour un supplémentaire orthogonal, et on a (F J‘)J' =F.

» On a immédiatement F' C (FJ‘)J‘, et il faudra soigner l'autre inclusion en utilisant la décomposition en somme directe
donnée.

Remarques

1. Attention, ces résultats sont souvent mal interprétés : rien ne dit que le supplémentaire orthogonal existe dans un
espace préhilbertien quelconque, et de la méme fagon, on n’a pas toujours (FL)L = F'... Par contre, s’il existe, cette
derniere égalité est vraie !

2. Etsi F= (FL)L7 alors on obtient en particulier que F' est fermé dans E.

Exemple 4 Dans E = C°([0,1],R), on définit le produit scalaire :

< fg>= / f(H)g(t) di

et on pose F = {f € E, f(0) =0}.

1. Montrer que F est un sous-espace vectoriel de E, et établir que F* = {0}.
& 1yL
2. En déduire que E # F ® F~ et que F # (F~)~.

2.2 Projection orthogonale sur un sous-espace vectoriel de dimension finie
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{Théoréme 10 (d’existence du supplémentaire orthogonal).}

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de . On suppose de plus que F' est de dimension
finie p > 1. Alors, il admet un supplémentaire orthogonal de sorte que :

€L
E=FoF*

> F et F* sont toujours en somme directe. On se contente alors de montrer que E = F + F* par analyse-synthése.

Définition Soit F un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E de dimension finie p > 1.
1L
En particulier, E = F & F! et ainsi :
Vee B, (y,z) e FX F* z=y+2

On appelle alors projection orthogonale sur F la projection pr sur F parallelement & F et définie par pr(z) = y.
De plus, pr(x) est appelé le projeté orthogonal de z sur F.

Remarque De fagon immédiate, la projection orthogonale est un projecteur : on parle méme de projecteur orthogonal
et elle vérifie :

pr € L(E), pr opr = pr

Im(pr) L Ker(pr)

Propriété 11 (caractérisation du projeté orthogonal sur un sous-espace vectoriel de dimension ﬁnie).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E. On suppose de plus que F' est de dimension
finie p > 1 et notons y € F. Alors,
y=pr(z) e z—yecF"

» C’est immédiat, puisqu’on a toujours : x =y + (z —y).

{Propriété 12 (expression du projeté orthogonal sur un sous-espace vectoriel de dimension ﬁnie).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E. On suppose de plus que F' est de dimension
finie p > 1. Alors, en notant B = (eq, ..., ep) une base orthonormée de F, on a pour tout = € E,

P
pF(ﬁU) = Z <ei,xr>.e
=1

» On applique la caractérisation précédente de sorte que x —y € F+ < Vi € [1,p], <z—y,e; >=0.

Remarques

1. Si E désigne un espace euclidien, alors tous les sous-espaces vectoriels sont de dimension finie. On peut donc toujours
avoir une décomposition en somme directe orthogonale :

1
E=F3F*
et ainsi, en notant pr et pp1 les projections associées, il vient encore : idg = pr + ppL.

2. On peut aller plus loin et en considérant F' de dimension finie, on peut aussi définir la symétrie orthogonale par
rapport & F et de direction F* de sorte que :
sp=2pr—idp:x+—2y— (y+z2)=y—=z
En particulier, elle vérifie :
SF € [,(E), SFp O Sp =1dE
Ker(sp —idg) L Ker(sr +idg)

Définition Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E' de dimension finie p > 1.
Sous réserve d’existence, on appelle distance de x € E a F le nombre :

(e, F) = it Jlo =yl
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{Théoréme 13 (de minirnisation).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de F de dimension finie p > 1. Alors, la distance
de x a F est atteinte en un unique point de F' et on a :

d(z, F) = ||z — pr(z)ll2 = V]lz]l22 = |lpr ()22

» Dans un premier temps, on vérifie que ||x — pr(x)||2 est bien ce minimum, puis partant de x = pr(z) + x — pr(z), on ap-
plique le théoréme de Pythagore pour justifier la valeur obtenue. Enfin, il ne faudra pas oublier de prouwver l'unicité annoncée !

Exemple 5 Trouver trois réels (a, b, c) tels que :

1
/ (In(t) — ¢ — bt — at®)? dt soit minimale.
0

{Théoréme 14 (inégalité de Bessel).}

Soit E un espace préhilbertien réel.

1. Si (e1,...,ep) désigne une famille orthonormée de E, alors on a pour tout z € E,

D
S < e >2< allo®
=1

2. Si on suppose de plus que la famille (ex)ren est une famille orthonormée totale, c’est a dire telle que E = Vect((ex)ren),
alors en considérant « € F, la série Y < ek, x >?2 converge et :

oo
Z <ep,x>>=|z[2? (égalité de Parseval-Bessel)
k=0

» Pour le premier résultat, on rappellera la décomposition © = pr(x) + x — pr(x). Pour le second, on procédera en deuz
temps : on prouve d’abord la convergence avant d’essayer de contréler la différence entre la limite et les sommes partielles.

Remarque Cette derniere égalité n’est pas au programme de MP, mais elle est trés pratique quand on la prolonge aux espaces
préhilbertiens complexes. En particulier, si on se place dans l’espace vectoriel des fonctions continues et 27-périodiques &
valeurs complexes, et muni du produit scalaire :

™

<f.9>=g [ T a

Alors, on peut montrer que la famille (e,, = t — ei"t)ngz est une famille orthonormée totale sur E. La série de fonctions
ZnEZ < en, f > .en est alors appelée série de Fourier, et d’apres la preuve précédente, elle converge au sens de la norme
|I-ll2 et on peut réécrire ’égalité de Parseval :

+oo ) 1 - ,
Z@ e (D) =5 | IF@F dt
avec Vk € Z, Ck(f) =< e,ﬂf >— % f(t)e—ikt dt

En adaptant un peu le choses, on montre que cette formule est encore vraie pour des fonctions continues par morceaux,
2m-périodiques et régularisées aux points de discontinuité... Ainsi, en choisissant f la fonction 27-périodique vérifiant pour
tout = €] — m, w[, f(z) = =z, on retrouve directement 1’égalité :
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3 Endomorphismes remarquables d’un espace euclidien

Pour finir, on se place dans E un espace euclidien de dimenion finie n > 1, et ainsi pour tout sous-espace vectoriel F' :
ool . 1 )
E=F®F = dim(F~)=n—dim(F)

3.1 Définition et propriétés de I’adjoint d’un endomorphisme

{Théoréme 15 (de représentation de Riesz).]

Soit E un espace euclidien, et considérons ¢ une forme linéaire sur E. Alors, il existe un unique vecteur a € E tel que :
Ve € E, ¢(z) =< z,a >

En particulier, 'application f : a —< ., a > désigne un isomorphisme de E sur E*, et ainsi toute forme linaire peut étre vu
comme un produit scalaire relatif & un unique vecteur associé.

» On introduit une base orthonormée de E et on procéde par analyse-synthése.

{Théoréme 16 (existence et unicité de 1'adjoint d’un endomorphisme).]

Soit E un espace euclidien et considérons u € L(E), alors il existe un unique endomorphisme noté u* tel que :
Y(z,y) € B, <u(z),y >=<z,u"(y) >

Cet endomorphisme est alors appelé 'opérateur adjoint de u ou tout simplement ’adjoint de w.

» On note a y firé, ¢y : x —>< u(x),y > et on invoque le théoreme de représentation de Riesz. Dans un deuziéeme temps,
on prouve alors que u* : y — ay est bien un endomorphisme.

Exemple 6 On se place dans E = M, (R) qu'on munit du produit scalaire canonique :
< M,N >=tr(M"N)
et on fixe A € E.
1. On définit alors f: X — [A, X] = AX — X A. Justifier que f € L(E).
2. Déterminer alors f* l’adjoint de f.

3. On suppose de plus que A € Sp(R). Montrer que f* = f.

{Propriété 17 (de l’adjoint).]

Soit E un espace euclidien et considérons u,v € L(FE), alors :
1. pour tout A € R, (Au+v)* = Au™ 4+ v™.
2. idy =idg et (U*)" =u

3. (vou)" =u*ov*

» A chaque fois, il suffit de revenir a l’égalité via le produit scalaire, afin d’identifier les résultats.

Corollaire 18 (de I’adjoint d’un automorphisme).}

Soient F un espace euclidien et u € £L(E) qu’on suppose inversible, alors u* est aussi inversible, et on a (u*)™* = (u™!)*.

1

» Partant de wou™~ = idg, il suffit de composer par *.
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{Propriété 19 (matrice de 'ajoint en base orthonormée).}

Soit E un espace euclidien et considérons u € L(E). Alors, en notant B une base orthonormée de E, on a toujours :
Matg(u*) = Matp(u)”
Et en particulier, le rang, la trace, le déterminant et le polynome caractéristique étant des invariants de similitude :

rg(u*) = rg(u), tr(u*) = tr(u), det(u") = det(u) et xux = Xu < Sp(u”) = Sp(u)

» On revient a la définition de la matrice d’une telle application, et on rappellera que les composantes dans une telle base,
s’obtiennent par simple produit scalaire sur les vecteurs de la base. La suite est immédiate par invariant de similitude.

Remarque Encore une fois, on essaiera de comprendre que toutes ces propriétés nous permettent en fait de connaitre
l'opérateur adjoint, & partir du seul endomorphisme w.

Propriété 20 (noyau et image de 17adjoint).]

Soit E un espace euclidien et considérons u € L(E). Alors, on a :

Ker(u*) = Im(u)™ et Im(u*) = Ker(u)*

» Pour la premieére égalité, on peut raisonner par équivalence. Pour la seconde, on pourra proposer une inclusion et revenir
a ’égalité des dimensions.

Propriété 21 (stabilité de I'orthogonal par l’adjoint).]

Soit E un espace euclidien et considérons u € L(E), et F un sous-espace vectoriel de E. Alors, F' est stable par u si et
seulement si F'* est stable par u*.

» On procede par double implication : pour le sens réciproque, on pourra invoquer le caractére involutif des opérations * et
1 en dimension finie.

3.2 Cas particulier des endomorphismes symétriques

Définition Soit F un espace euclidien et considérons u € L(E). On dit que u est autoadjoint ou désigne un endomorphisme
symétrique si u* = u, c’est a dire que :

V(z,y) € B*, <u(z),y >=<=z,uly) >

1
Exemple 7 Dans un espace euclidien E, on considére F' un sous-espace vectoriel de sorte que E = F & F*, et on définit pr et
sr la projection orthogonale sur F' et la symétrie orthogonale par rapport a F'.

Montrer que pr et sy sont des endomorphismes symétriques, et ainsi pf = pr et s} = sr.

{Propriété 22 (caractérisation matricielle d’un endomorphisme symétrique).]

Soit E un espace euclidien et considérons u € L(E). Alors, en notant B une base orthonormée de E, u est un endomorphisme
symétrique si et seulement si :
Matg(u) = Matp(u)”

c’est a dire que sa matrice en base orthonormée est symétrique réelle.

» On peut travailler par équivalence en utilisant l’isomorphisme canonique u — Matg(u), avec la base B donnée.
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{Corollaire 23 (espace vectoriel des endomorphismes symétriques).]

Soit E un espace euclidien et notons S(E) ensemble des endomorphismes symétriques sur E. Alors, S(E) est un sous-espace
vectoriel de L(E), et on en déduit & I’aide de isomorphisme canonique & base orthonormée fixée v — Matp(u), que :

mmwwnzmm&mnzﬂ%ﬂl

{Propriété 24 (immédiate des endomorphismes symétriques).]

Soit E un espace euclidien et considérons u € S(E). Alors,

1. endomorphisme induit uw sur un sous-espace stable ' C E est toujours symétrique.

2. pour tout sous-espace stable F, alors F' est encore stable par w.

» C’est immédiat. Le second point découle des propriétés de l’adjoint avec ici u™ = u.

{Propriété 25 (éléments propres d’un endomorphisme symétrique).]

Soit E un espace euclidien et considérons u € S(F). Alors,

1. le spectre de u est réel et ainsi, Sp(u) C R.
2. u posseéde au moins une valeur propre réelle et ainsi, 1 < Card(Sp(u)) < n.

3. en notant E,(A1),..., Ey(\p) les sous-espaces propres associés & des valeurs propres distinctes de u, alors ils sont deux
a deux orthognaux, et ils sont donc toujours en somme directe.

» Pour le premier point, on se plonge dans M, (C) et on pourra travailler sur Iégalité Matp(u)X = \;X aprés avoir fizé
une base orthonormée de E. Le second point est immédiat et pour le dernier, on reviendra simplement a la définition de
l’orthogonalité.

Remarque Toutes ces propriétés sont importantes et on essaiera de s’en souvenir pour les oraux... ce sont des questions
faciles pour ’examinateur, et en plus, ce sont ces propriétés qui nous livrent le théoréme spectral !

{Théoréme 26 (spectral).]

Soit E un espace euclidien et considérons u € S(E). Alors, il existe une base de vecteurs propres orthonormés B dans laquelle
Matp(u) est diagonale. On dit que u est orthodiagonalisable.
Et ainsi, plus généralement, pour toute matrice symétrique réelle S € S, (R), il existe P € O, (R) telle que :

S = PDPT avec D une matrice diagonale a coefficients réels

1L
» On note F = F1 & ... @ F, de sorte que E = F & F1. En raisonnant par Uabsurde, on montre que E = F et ainsi, on
pourra choisir une base adaptée de vecteurs propres. Pour le second point, il suffit de considérer l’endomorphisme symétrique
u canoniquement associée dans la base canonique.

Remarques

1. Attention, ce résultat n’est vrai que pour les matrices symétriques réelles. Par exemple, on peut considérer la matrice :

M:(ilae&@)

qui est nilpotente, donc de spectre nul... Elle ne peut pas étre diagonalisable, car elle serait égale a la matrice nulle.

2. Si on souhaite ortho-diagonaliser une matrice symétrique réelle, on procedera de fagon tres classique, en cherchant
d’abord une base de vecteurs propres, avant de ’orthonormaliser a l’aide du principe d’orthonormalisation de
Gram-Schmidt.

3. Si A et B désignent deux matrices symétriques réelles telles que AB = BA, alors elles sont co-orthodiagonalisables.
En effet, on peut adapter la preuve de la codiagonalisation et choisir une base de réduction commune qui sera or-
thonormée de sorte que :

3P e O0,(R), A= PD,P" et B= PDyP"
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2 1 0
Exemple 8 On consideére la matrice A= |1 2 1
0 1 2

1. Justifier que A est diagonalisable, puis déterminer une base orthonormale dans laquelle A est diagonale.

+oo Ak

2. Calculer alors exp(A4) = > %) R

Définition Soit A € S, (R).

e On dit enfin que A est positive si pour tout X € M, 1(R), XTAX > 0, et on note S; (R) I'ensemble des matrices
symétriques réelles positives.

e On dit enfin que A est définie positive si pour tout X € M, 1(R),

XTAX >0 (positive)
XTAX =0= X =0 (définie)

et on note S;' " (R) I’ensemble des matrices symétriques réelles définies positives.

{Propriété 27 (caractérisation des matrices symétriques positives et définies positives) )

v/

Soit A € S,(R). Alors, on a les caractérisations suivantes :
1. Ac SH(R) &V Ae Sp(A), A>0

2. Ae SIT(R) & Ve Sp(A), A>0

» A chaque fois, on raisonne par double implication : le sens direct est immédiat, car il suffit de présenter un vecteur propre
associé. Pour le sens réciproque, on pourra évidemment invoquer le théoréme spectral.

Remarque Attention, on peut aussi adapter ces notions aux endomorphismes et ainsi, si u € S(F) et B une base or-
thonormée, on dit encore que :

e u est positif si pour tout x € E,
<u(z),z>>0e X Matp(u)X >0

et on retiendra que u est positif Matp(u) € S (R) & V A € Sp(u), A > 0.

e y est défini positif si pour tout x € F,

<u(z),z>>0 XTMatg(u)X >0
<u(z),z>=0=2=0 XT"Matp(w)X =0=> X =0

et on retiendra que u est défini positif Matg(u) € S;7T(R) < V A € Sp(u), A > 0.

3.3 Cas particulier des automorphismes orthogonaux

Définition Soit M € M,,(R). On rappelle que M est dite orthogonale si M est inversible, et son inverse est M~ = M7,
On appelle alors groupe orthogonal le groupe (O, (R), x) définie par :

O0.,(R)={M € GL,(R), M ' =M"}

Remarques

1. En particulier, si M € O, (R), alors MTM = I,,, c’est & dire qu’en notant C1, ..., C, les vecteurs colonnes de M, on a
pour tout (i, 7) € [1,n]?,
MMy = 6 & C{ Cy =6
Autrement dit, M € O,(R) si et seulement si les vecteurs colonnes constituent une base orthonormée de M,,1(R).
C’est méme pour cela que dans le théoréme spectral, la matrice de passage P est orthogonale de sorte que :

S = PDPT avec D une matrice diagonale 3 coefficients réels
i € On(R), on a en particulier det(M) = +1. On appelle alors groupe spécial orthogonal I'ensemble noté
et

Si M
SO, (R) et défini par :
SO, (R) = {M € O,(R), det(M) =1}
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3. Bien entendu, on pourra vérifier que O, (R) et SO, (R) portent bien leur nom : ainsi, si on revient a la caractérisation
des sous-groupes, on montre qu’il s’agit 14 de deux sous-groupes multiplicatifs de G£,, (R).

Corollaire 28 (O, (R) et SO, (R) sont des parties compactes).]

Soit n € N*, alors O, (R) et SO, (R) sont des parties fermées et bornées de M, (R) : elles sont donc compactes.

» La remarque précédente nous donne & la fois le fait que c’est borné, puisque les vecteurs (C;) sont unitaires et elles sont
fermées, en tant qu’image réciproque par une application continue de {I,} ou de {1}.

Définition Soit F un espace euclidien et considérons u € L(FE). On dit que u désigne un automorphisme orthogonal si u est
inversible et u* = w1, c’est & dire que :

Y(z,y) € B, <u(x),y>=<z,u ' (y) >

et on peut encore noter O(E) Pensemble des automorphismes orthogonaux sur E.

{Propriété 29 (caractérisation matricielle d’un automorphisme orthogonal).]

Soit E un espace euclidien et considérons u € L(E). Alors, en notant B une base orthonormée de E, u est un automorphisme
orthogonal si et seulement si :

Matg(u™') = Matg(u)”, ce qui s’écrit encore (Matg(u)) ™' = Matp(u)”

c’est a dire que sa matrice en base orthonormée est orthogonale.

» On peut travailler par équivalence en utilisant l’isomorphisme canonique u — Matp(u), avec la base B donnée.

{Corollaire 30 (caractérisation d’un automorphisme orthogonal & 1’aide de l'image d’une BON).]

Soit E un espace euclidien et considérons v € L(FE). Alors, en notant B une base orthonormée de E, on en déduit que u est
un automorphisme orthogonal si et seulement I'image de B par u est encore une base orthonormée de E.

{Corollaire 31 (caractérisation d’un automorphisme orthogonal par conservation de la norme et du produit scalaire).ji

Soit E un espace euclidien et considérons u € L(E). Alors, les assertions suivantes sont équivalentes :

1. u est un automorphisme orthogonal.
2. pour tout x € E, ||u(z)|l2 = ||x||2 et ainsi, u conserve la norme.

3. pour tout (z,y) € E?, < u(x),u(y) >=< x,y > et ainsi, u conserve le produit scalaire.

On dit aussi que u est une isométrie vectorielle.

» On procéde par cycle et on n’hésitera pas a exploiter le résultat précédent pour prouwver la derniére implication.

Remarques

1. On fera attention au vocabulaire : si pr # +idg, alors la projection orthogonale n’est pas un automorphisme orthogonal.
Par contre, la symétrie orthogonale sr est bien un automorphisme orthogonal.

2. De plus, si u est une isométrie vectorielle, alors pour toute valeur propre A € Sp(u) et en notant x un vecteur popre
associé :
u(@)ll2 = llzlla = [Alllzlls = llzllz < [A] =1

3. En fonction des exercices, on pourra encore jouer sur la dualité entre O(E) et O, (R) et ainsi, si P € O,(R), alors P
peut étre vue comme la matrice d’une isométrie vectorielle de R™ dans la base canonique et :

e les vecteurs colonnes désignent une base orthonormée de My1(R),

e on a toujours [|[PX|]2 = || X||2-
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{Propriété 32 (immédiate des automorphismes orthogonaux).]

Soit E un espace euclidien et considérons u un automorphisme orthogonal de E. Alors,

1. ’endomorphisme induit u sur un sous-espace stable F' C F est toujours orthogonal.

2. pour tout sous-espace stable F, alors F'- est encore stable par w.

» C’est immédiat. Pour le second point, on peut encore utiliser les propriétés de l’adjoint avant de vérifier que u(Fl) C F*+.

Remarque En fait, on distinguera ici les automorphismes orthogonaux directs de déterminant +1 et les automor-
phismes orthogonaux indirects de déterminant —1, et on essaiera de comprendre la nature de ces automorphismes en
petite dimension, avant d’admettre leur réduction par blocs en dimension quelconque.

{Propriété 33 (automorphismes orthogonaux en dimension 2)]

Soit u un automorphisme orthogonal du plan euclidien. Alors en notant B une base orthonormée, on a :
M = Matp(u) € O2(R) et ainsi :

B o _ [cos(0) —sin(6)
e det(M) =1= il existe 0 € R tel que M = (sin(@) cos(6) )

R(9)

B o __[cos(0)  sin(6)
e det(M) = —1= il existe 0 € R tel que M = (sin(@) —cos(0) )"

S(0)

» On traduit simplement l'appartenance au groupe orthogonal. On pourra alors discuter suivant la valeur du déterminant.

Remarque En fait, dans le plan euclidien muni d’une base orthonormée directe, R(#) représente la rotation d’angle 6 [27],
et S(0) désigne une réflexion, c’est a dire une symétrie orthogonale par rapport & un hyperplan.

{Corollaire 34 (cas particulier des rotations du plan euclidien).]

On en déduit alors :
1. SO2(R) est un groupe multiplicatif commutatif avec pour tout (6,6’) € R?, R(6) x R(#') = R(6 +6') = R(#") x R(6).

2. L’application ¢ : 6 — R(0) est une application surjective de R vers SO2(R).

{Propriété 35 (automorphismes orthogonaux en dimension 3)]

Soit u un automorphisme orthogonal de ’espace euclidien de dimension 3. Alors il existe une base orthonormée B et un réel
0 tels que :
cos(d) —sin(d) O
Matg(u) = | sin(f)  cos(6) 0
0 0 +1

En particulier, le signe du déterminant nous permet d’identifier la derniere valeur.

» Le polynome caractéristique x. €étant de degré 3, il existe au moins une valeur propre réelle A = £1. En notant es un
vecteur propre associé, on travaille alors sur F = ex de sorte que ur € O2(R).

Remarque Dans le cas particulier ot u € SO3(R), alors il existe une base orthonormée dans laquelle :

cos(d) —sin(d) O
Matg(u) = | sin(f) cos(d) O
0 0 1

Cela représente encore la rotation d’angle 6 [27] et d’axe la droite invariante donnée par Ker(u — idg).
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{Théoréme 36 (automorphismes orthogonaux en dimension quolconquo).]

Soit u un automorphisme orthogonal de I’espace euclidien de dimension n > 1. Alors, on admet qu’on peut généraliser le
travail précédent et ainsi, il existe une base orthonormée B dans laquelle la matrice de u est diagonale par blocs avec :

e des blocs carrés de taille 1 de la forme (£1)

y . cos(f) —sin(6)
e des blocs carrés de taille 2 de la forme (sin(&) cos(8) )’ avec 6 # 0 [r].

4 Quelques applications classiques

4.1 Racine carrée d’un endomorphisme symétrique et positif

Exemple 9 Soit E un espace euclidien et f un endomorphisme symétrique et positif de E.

1. Montrer qu’il existe un unique endomorphisme g symétrique et positif tel que :
g =17
2. En raisonnant par existence-unicité, on peut directement travailler avec les matrices et obtenir le méme résultat :
VS € S (R), 3R € S} (R), R> =S

Cette matrice R est appelé racine carrée de S. Justifier alors que R désigne un polynéme en S.

4.2 Décomposition d’Iwasawa et inégalité d’Hadamard

Exemple 10 Soit M € GL, (R).

1. Montrer qu'il existe un unique couple (O, T) tel que :
M =0T

avec O € O, (R) et T une matrice triangulaire supérieure & coefficients diagonaux strictement positifs.
Pour lexistence, on pourra noter u l’endomorphisme de R™ canoniquement associé a M et étudier la famille (u(e;)).

2. On note C1,...,C, les colonnes de M. Etablir alors que :

|det(M)]| < [|Cillz2 ... [|Cnll2

4.3 Décomposition polaire d’une matrice donnée et sous-groupes compacts de GL,(R)
Exemple 11

1. Soit M € M, (R). Montrer que M T M est symétrique et & valeurs propres positives.
2. On suppose de plus que M est inversible. Montrer qu’il existe un unique couple (O, S) € O, (R) x ST (R) tel que :
M =08

3. Considérons G un sous-groupe compact de (GL, (R), x) contenant O, (R), et A € G.

(a) On note S la partie symétrique de A dans sa décomposition polaire. Justifier que pour tout k € Z, sk eq.
(b) Montrer que 1 est la seule valeur propre de S, puis établir que G = O, (R).

Autrement dit, au sens de I'inclusion, O, (R) désigne le plus grand sous-groupe compact de (GL,,(R), x) : on dit aussi que O, (R)
est un sous-groupe compact maximal.
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