
Variables aléatoires discrètes

Chapitre 10

Ce chapitre est difficile, car il faut avant tout comprendre comment on formalise le
calcul des probabilités dans un espace probabilisable. Ici, on reviendra rapidement
sur les espaces probabilisés discrets, avant d’introduire la notion de variable aléatoire
discrète. Si celle-ci est riche, c’est d’abord parce qu’elle nous offrira de nombreux
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Pour aller plus loin
Depuis quelques années maintenant, on retrouve à l’écrit de nombreux problèmes mettant en jeu les espaces probabilisés, du
théorème de Perron-Frobenius au théorème de Moivre-Laplace, en passant par l’étude de marches aléatoires... c’est donc un
chapitre incontournable et il faudra vite prendre l’habitude de manipuler le formalisme sous-jacent.
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1 Espaces probabilisés

Quand on étudie une expérience aléatoire, on cherche très souvent à construire un modèle probabiliste qui pourrait lui
être associé : pour cela, on définit généralement un univers Ω, l’ensemble des résultats de l’expérience et on cherche à définir
une mesure de probabilité P qui à tout évènement A ∈ P(Ω) renvoie un poids positif qui pourra rendre compte de la
probabilité que celui-ci se réalise.

Remarques

1. Une mesure de probabilité sera donc souvent définie sur P(Ω) ou une partie de P(Ω), et il s’agira de bien faire la
différence entre ces deux ensembles :

Ω ∈ P(Ω), mais Ω 6= P(Ω)

Et si Ω est de cardinal fini n ∈ N∗, on rappelle que card(P(Ω)) = 2n. Par exemple, on pourra considérer :{
Ω = J1, 3K = {1, 2, 3}
P(Ω) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

2. Suivant les expériences aléatoires considérées, l’univers Ω peut être infini et même non dénombrable. Dans ce dernier
cas, il est très difficile de décrire tous les évènements et donc de définir correctement une mesure de probabilité sur
P(Ω). Le plus souvent, on préfèrera alors travailler sur une partie de P(Ω), plus simple et qui nous permettra de décrire
les évènements à l’aide d’opérations ensemblistes : c’est pour cela qu’on introduit la notion de tribu des évènements.

1.1 Premières définitions et propriétés sur un espace probabilisé

Définition Soit Ω un ensemble non vide. On appelle alors tribu des évènements tout sous-ensemble A de P(Ω) tel que :

• Ω ∈ A

• A est stable par passage au complémentaire, c’est à dire : ∀A ∈ A, A ∈ A

• A est stable par réunion finie ou infinie dénombrable, c’est à dire que pour toute suite (An) finie ou infinie de AN,

∪n∈NAn ∈ A

Muni d’une telle tribu, on dit que (Ω,A) est un espace probabilisable et les éléments de A désignent encore les évènements
de l’expérience aléatoire.

Soit (Ω,A) un espace probabilisable, alors on a également :

1. ∅ ∈ A

2. A est stable par intersection finie ou infinie dénombrable, c’est à dire que pour toute suite (An) finie ou infinie de AN,

∩n∈NAn ∈ A

Propriété 1 (immédiate).

Définition Soit (Ω,A) un espace probabilisable. On appelle système complet d’évènements toute famille d’évènements finie
ou infinie dénombrable (Ai)i∈I tels que :{
∀(i, j) ∈ I2, i 6= j, Ai ∩Aj = ∅, c’est à dire que ces ensembles sont disjoints ou que ces évènements sont incompatibles⋃
i∈I Ai = Ω, c’est à dire qu’ils recouvrent Ω

On peut aussi dire que ces évènements forment une partition de Ω et on pourra noter : Ω = ti∈IAi.

Définition Soit (Ω,A) un espace probabilisable. On appelle enfin mesure de probabilité ou plus simplement probablité toute
application P : A −→ R+ telle que :{

P (Ω) = 1

P est σ-additive, autrement dit pour toute suite finie ou infinie dénombrable d’évènements (Ai)i∈I incompatibles :

P (ti∈IAi) =
∑
i∈I

P (Ai)

Dans ce cas, on dit que (Ω,A, P ) est un espace probabilisé.
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Remarque La plupart du temps, on travaillera dans le cas où Ω désigne un ensemble fini ou infini dénombrable, c’est à dire
qu’on aura :

Ω = ti∈I{ωi}, avec I un ensemble d’indices au plus dénombrable

Les évènements élémentaires {ωi} forment ici une partition de Ω, et en considérant la tribu P(Ω), appelée tribu discrète,
on peut toujours construire une mesure de probabilité en définissant P une application σ-additive et pour laquelle on affecte
à chacun de ces évènements élémentaires un poids pi ≥ 0 tel que :∑

i∈I

pi = 1

En particulier, quand I sera infini dénombrable, cela reviendra à étudier la convergence d’une série à termes positifs.

Soit (Ω,A, P ) un espace probabilisé. Alors, on a :

1. pour toute famille finie A1, . . . , An d’évènements incompatibles de A, P (A1 t . . . tAn) =
∑n
i=1 P (Ai).

2. P (∅) = 0.

3. pour tout A ∈ A, P (A) = 1− P (A).

4. pour tout couple (A,B) ∈ A2 tel que A ⊂ B, P (B\A) = P (B)−P (A). Et en particulier, P (A) ≤ P (B) : l’application
est donc croissante au sens de l’inclusion.

5. pour tout couple (A,B) ∈ A2, P (A ∪B) = P (A) + P (B)− P (A ∩B).

Propriété 2 (sur un espace probablisé).

I A chaque fois, on revient à une réunion disjointe d’évènements bien choisis et on invoque la σ-additivité de P .

Remarque En fait, cette dernière propriété nous permet de montrer que globalement pour toute famille finie d’évènements,
on a toujours l’inégalité :

P (A1 ∪ . . . ∪An) ≤
n∑
i=1

P (Ai)

Mais si on le souhaite, on peut aussi généraliser la formule obtenue. Par exemple, par associativité, on a :

P (A1∪A2∪A3) = P ((A1∪A2)∪A3) = P (A1∪A2)+P (A3)−P ((A1∪A2)∩A3) = P (A1∪A2)+P (A3)−P ((A1∩A3)∪(A2∩A3))

= P (A1) + P (A2) + P (A3)− P (A1 ∩A2)− P (A1 ∩A3)− P (A2 ∩A3) + P (A1 ∩A2 ∩A3)

C’est un cas particulier de la formule du crible de Poincaré qu’on peut établir par récurrence sur n ≥ 2 de sorte que :

P (∪ni=1Ai) =

n∑
k=1

(−1)k−1
∑

J⊂J1,nK,Card(J)=k

P (∩j∈JAj)



Soit (Ω,A, P ) un espace probabilisé et considérons (An) ∈ AN une suite d’évènements.

1. Si on suppose de plus que (An) est croissante, c’est à dire que pour tout n ∈ N, An ⊂ An+1, alors :

P (∪+∞
n=0An) = lim

n→+∞
P (An)

2. Si on suppose de plus que (An) est décroissante, c’est à dire que pour tout n ∈ N, An+1 ⊂ An, alors :

P (∩+∞
n=0An) = lim

n→+∞
P (An)

Théorème 3 (de la limite monotone pour une suite d’évènements).

I Pour le premier point, on pose Bn = An\An−1 et on montre que (Bn) désigne une suite d’évènements incompatibles tels
que ∪+∞

n=0Bn = ∪+∞
n=0An, on en déduit la valeur par σ-additivité. Pour le second point, il suffit de passer au complémentaire.
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Soit (Ω,A, P ) un espace probabilisé et considérons (An) ∈ AN une suite d’évènements. Alors, on a plus généralement :

1. P (∪+∞
n=0An) = limn→+∞ P (∪nk=0Ak)

2. P (∩+∞
n=0An) = limn→+∞ P (∩nk=0Ak)

Corollaire 4 (conséquences du théorème de la limite monotone).

I On introduit ici les suites Bn = ∪nk=0Ak et Cn = ∩nk=0Ak et on exploite le théorème de la limite monotone pour une suite
d’évènements.

Remarque Ce dernier résultat nous permet alors de prolonger par passage à la limite l’inégalité obtenue pour la probablité
d’une réuion d’évènements, et ainsi pour toute suite (An) ∈ AN, on retiendra :

P (

+∞⋃
k=0

Ak) ≤
+∞∑
k=0

P (Ak)

avec
∑+∞
k=0 P (Ak) ∈ R+ ∪ {+∞}. Cette inégalité dans R est aussi appelée inégalité de Boole et elle nous donne ainsi une

majoration pour toute réunion dénombrable d’évènements.

Définition Soit (Ω,A, P ) un espace probabilisé. On rappelle enfin que pour tout évènement A ∈ A :

• A est dit négligeable si P (A) = 0.

• A est dit presque sûr ou presque certain si P (A) = 1.

Exemple 1 On effectue une suite infinie de lancers d’une pièce équilibrée. On note pour tout n ∈ N∗, An l’évènement ”au cours
des n premiers lancers, on a obtenu au moins une fois pile”.

Quelle est la probabilité de l’évènement E = ”on a obtenu au moins une fois pile” ?

1.2 Cas particulier des espaces probabilisés discrets

Soit Ω un ensemble fini ou infini dénombrable tel que Ω = ti∈I{ωi}, et considérons (pi)i∈I une famille de nombres réels tels
que :

∀i ∈ I, pi ≥ 0 et
∑
i∈I

pi = 1

Alors, il existe une unique probabilité P sur (Ω,P(Ω)) telle que pour tout i ∈ I, P ({ωi}) = pi. Cette application est définie
pour tout A ∈ P(Ω) par :

P (A) =
∑
i∈IA

pi, avec IA = {i ∈ I, ωi ∈ A}

Théorème 5 (mesure de probabilité sur un univers au plus dénombrable).

I On procède par analyse-synthèse et on reviendra à la définition d’une mesure de probabilité : on pourra d’ailleurs invoquer
le théorème de sommation par paquets pour obtenir la σ-additivité.

Exemple 2

1. Fixons p ∈]0, 1[ et on définit pour tout n ∈ N∗,
pn = (1− p)n−1p

Montrer que (pn) définit une mesure de probabilité sur (N∗,P(N∗)).

2. Fixons λ > 0 et on définit pour tout n ∈ N,

pn = e−λ
λn

n!

Montrer que (pn) définit une mesure de probabilité sur (N,P(N)).

3. On se place dans N∗ et on définit pour tout n ∈ N∗,

pn =
1

n(n+ 1)

(a) Montrer que (pn) définit une mesure de probabilité sur (N∗,P(N∗)).
(b) On note P l’unique probabilité associée à la suite (pn). Déterminer la probabilité qu’un entier soit pair ?
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Définition Soit n ∈ N∗. On se place dans le cas particulier où Ω = {ω1, . . . , ωn} est un ensemble fini et on note encore A = P(Ω).
On appelle alors probabilité uniforme la probabilité P : A −→ R+ définie par :

∀ i ∈ J1, nK, P ({ωi}) =
1

card(Ω)

de sorte que pour tout évènement A ∈ A, P (A) =
card(A)

card(Ω)
.

Remarque Les espaces probabilisés finis, munis de la probabilité uniforme, nous permettent de modéliser les situations les
plus courantes, et il sera alors très simple de déterminer la probabilité d’un évènement A, à condition d’être capable de
dénombrer les éléments de A. D’ailleurs, ce seront souvent des exercices de dénombrement plutôt que des exercices de
probabilités...

Pour cela, on peut rappeler que :

• le nombre de façons de choisir k éléments distincts dans un ensemble à n éléments est donné par le coefficient binomial:

(nk ) =
n!

k!(n− k)!

• dans le cas particulier où il faudra tenir compte de l’ordre de ces k éléments, on n’hésitera pas à multiplier le coefficient
(nk ) par k!, le nombre de permutations de ces k éléments et ainsi, le nombre d’arrangements de k éléments distincts
dans un ensemble à n éléments est donné par :

k!(nk ) =
n!

(n− k)!

Exemple 3 (Problème des anniversaires)
Des étudiants au nombre de n sont réunis dans un amphithéâtre.
Quelle est la probabilité qu’au moins deux étudiants aient leur anniversaire le même jour ? On suppose que qu’aucun étudiant
n’est né le 29 février et que n ≤ 365.

Exemple 4 (Problème des rencontres)
Soit n ≥ 2. Lors d’un bal auquel participent n couples, le choix de sa cavalière pour la première danse se fait au hasard. La
probabilité pour un danseur de danser avec sa femme est donc 1/n (assez faible lorsque n est grand).
Malgré tout, montrer qu’il existe un rang à partir duquel la probabilité qu’il y ait au moins une rencontre entre un danseur et sa
femme est supérieure ou égale à la probabilité qu’il n’y en ait pas ?
Pour tout i ∈ J1, nK, on pourra noter Ai =”le danseur i se retrouve avec sa femme”.

Exemple 5 (CCINP 104)
Soit n ≥ 3. On dispose de n boules numérotées de 1 à n et d’une bôıte formée de 3 compartiments numérotées de 1 à 3.
On lance simultanément les n boules et elles viennent toutes se ranger aléatoirement dans les 3 compartiments.

1. Déterminer la probabilité qu’il y ait deux compartiments vides ? la probabilité qu’il y ait un seul compartiment vide ?

2. En déduire la probabilité qu’il n’y ait aucun compartiment de vide.

Exemple 6 (Nombre de dérangements)
On note pour tout (n, k) ∈ N2 tel que k ≤ n, Fn,k le nombre de permutations de J1, nK ayant exactement k points fixes et on
définit le nombre de dérangements pour tout n ∈ N∗ par αn = Fn,0.
Et on convient que α0 = 1.

1. Montrer que pour tout (n, k) ∈ N2 tel que k ≤ n, Fn,k =
(
n
k

)
αn−k. En déduire que pour tout n ∈ N, n! =

∑n
k=0

(
n
k

)
αk.

2. On considère la série entière
∑ αn

n!
zn et on note R son rayon de convergence, S sa somme.

(a) Etablir que R ≥ 1 et que pour tout z ∈ C, |z| < 1, S(z) =
e−z

1− z .

(b) En déduire que pour tout n ∈ N, αn = n!
∑n
k=0

(−1)k

k!
.

(c) Justifier alors que pour tout n ≥ 2, αn = E(
n!

e
+

1

2
). On pourra calculer |αn − n!/e|.

3. On choisit au hasard une permutation de Sn, n ≥ 2.
Quelle est la probabilité P (Dn) que celle-ci soit un dérangement ? Que peut-on dire de limn→+∞ P (Dn) ?
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1.3 Probabilités conditionnelles et indépendance

Soit (Ω,A, P ) un espace probabilisé et considérons A ∈ A tel que P (A) > 0. Alors, l’application PA : A −→ R définie par :

PA : B 7−→ P (A ∩B)

P (A)

est une probabilité sur (Ω,A) appelée probabitité conditionnelle sachant A. De plus, pour tout évènement B, on notera
souvent PA(B) ou P (B|A) la probabilité que B se réalise sachant que l’évènement A s’est réalisé.

Théorème 6 (définition de la probabilité conditionnelle).

I On revient simplement à la définition d’une mesure de probablité.

Soit (Ω,A, P ) un espace probabilisé. Alors, pour toute famille finie d’évènements A1, . . . , An tels que P (A1∩ . . .∩An−1) 6= 0,
on a :

P (A1 ∩ . . . ∩An) = P (A1)PA1(A2)PA1∩A2(A3) . . . PA1∩...∩An−1(An)

Propriété 7 (formule des probabilités composées).

I On peut procéder de plusieurs façons : par récurrence ou alors, on factorise par P (A1) et on tente de reconnâıtre un
produit télescopique.

Soit (Ω,A, P ) un espace probabilisé et considérons (Ai)i∈I un système complet d’évènements de sorte que Ω = ti∈IAi. Si
de plus, pour tout i ∈ I, P (Ai) > 0, alors pour tout évènement B ∈ A,

P (B) =
∑
i∈I

P (B ∩Ai) =
∑
i∈I

P (Ai)PAi(B)

Propriété 8 (formule des probabilités totales).

I C’est immédiat : cela découle de la partition donnée par le système complet d’évènements.

Remarque On peut aussi étendre cette formule lorsque certains évènements du système vérifient P (Ai) = 0. En effet,
comme B ∩Ai ⊂ Ai, alors pour ces indices :

P (B ∩Ai) = 0

Ainsi, en convenant que dans ce cas, P (Ai)PAi(B) = 0, on obtient la formule des probabilités totales pour tout système
complet d’évènements.

Cette formule des probabilités totales est très utile : c’est souvent elle qui nous donnera la relation de récurrence dans l’étude de
certains processus de Markov, ces situations pour lesquelles l’état à l’instant n+ 1 ne dépend que de l’état à l’instant n.

Exemple 7 Une municipalité souhaite proposer un service de véhicules en libre service. Lors d’une première expérience, on
installe quelques véhicules en 3 lieux stratégiques de la ville : les places A, B et C. Avec ces véhicules, on peut effectuer un trajet
vers l’une des deux autres places et après quelques mois, on observe les résultats suivants :

• si un véhicule est en A, il se déplace vers B avec une probabilité 3/4 et vers C avec une probabilité 1/4 ;

• si un véhicule est en B, il se déplace vers A avec une probabilité 3/4 et vers C avec une probabilité 1/4 ;

• si un véhicule est en C, il se déplace vers B avec une probabilité 3/4 et vers A avec une probabilité 1/4.

On s’intéresse alors au déplacement d’un véhicule. Pour tout n ∈ N, on note An, Bn ou Cn les évènements ”à l’instant n, le
véhicule est en place A,B ou C”, et on note pour tout n ∈ N,

an = P (An), bn = P (Bn), cn = P (Cn)

1. En posant Xn =

anbn
cn

 ∈M31(R), montrer qu’il existe une matrice M ∈M3(R) telle que pour tout n ∈ N, Xn+1 = MXn.

2. Justifier que les valeurs propres de M sont toutes réelles, puis établir que M admet trois valeurs propres distinctes telles
que −1 < λ1 < λ2 < λ3 = 1.

3. Montrer qu’il existe un unique vecteur U0 ∈ EM (1) tel que la somme de ses composantes soit égale à 1.
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4. On considère alors une base de vecteurs propres B = (U0, U1, U2) associée aux valeurs propres 1, λ1, λ2 et on peut écrire
X0 = α0U0 + α1U1 + α2U2 dans cette base.
Montrer que pour tout n ∈ N, Xn = α0U0 + α1λ

n
1U1 + α2λ

n
2U2, puis justifier que nécessairement α0 = 1.

5. En déduire que les suites (an), (bn) et (cn) sont convergentes et déterminer leur limite.

Soit (Ω,A, P ) un espace probabilisé.

1. Si A et B désignent deux évènements de probabilité non nulle, alors :

PA(B) =
P (A ∩B)

P (A)
=
P (B)PB(A)

P (A)

2. Plus généralement, si (Ai)i∈I est un système complet d’évènements avec pour tout i ∈ I, P (Ai) > 0, alors pour tout
évènement B ∈ A de probabilité non nulle,

PB(Ai) =
P (Ai ∩B)

P (B)
=

P (Ai)PAi(B)∑
i∈I P (Ai)PAi(B)

Propriété 9 (formule de Bayes).

I Il suffit de revenir à la définition de la probabilité conditionnelle. Pour le deuxième point, on rappellera la formule des
probabilités totales afin de transformer le dénominateur.

Remarque Cette dernière formule est très pratique : elle nous permet de calculer des probabilités a posteriori, en inversant
tout simplement le conditionnement.

Définition Soit (Ω,A, P ) un espace probabilisé. On dit que deux évènements A et B sont indépendants si :

P (A ∩B) = P (A)P (B)

Plus généralement, pour toute famille quelconque d’évènements (Ai)i∈I , on dit qu’ils sont :

• deux à deux indépendants si pour tout (i, j) ∈ I2, i 6= j, P (Ai ∩Aj) = P (Ai)P (Aj).

• mutuellement indépendants si pour toute sous-famille finie (Ai)i∈J , on a :

P (∩i∈JAi) =
∏
i∈J

P (Ai)

Remarques

1. Si l’évènement A est négligeable, alors, comme A ∩ B ⊂ A, on a toujours P (A ∩ B) = 0 = P (A)P (B), et ainsi un
évènement négligeable est toujours indépendant de tout évènement.

2. Il ne faut pas confondre l’incompatibilité, c’est à dire A ∩ B = ∅ et l’indépendance de deux évènements... il existe
des évènements incompatibles qui ne sont pas indépendants. On retiendra surtout qu’il s’agit d’abord d’une notion
probabiliste et on préfèrera toujours revenir à la définition pour justifier que des évènements sont indépendants.

3. Par défaut, et sans aucune indication contraire, on pourra considérer que des évènements donnés indépendants dans
un énoncé sont mutuellement indépendants. En particulier, cela entrâıne évidemment qu’ils sont deux à deux
indépendants mais la réciproque est fausse !

Soit (Ω,A, P ) un espace probabilisé. Si de plus A et B sont indépendants, alors :
A et B sont indépendants

A et B sont indépendants

A et B sont indépendants

Propriété 10 (indépendance et évènements contraires).

I Il suffit de revenir à la définition à l’aide du produit des probabilités.

Remarque En fait, si (Ai)i∈I désigne une famille d’évènements mutuellement indépendants, alors on peut facilement
généraliser la propriété précédente et en notantBi ∈ {Ai, Ai}, les évènements (Bi)i∈I seront encore mutuellement indépendants.
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Exemple 8 On se place dans un espace probabilisé (Ω,A, P ) et on considère une suite d’évèements (An) ∈ AN.

1. On suppose que la série
∑
P (An) converge. Montrer que :

P (

+∞⋂
k=0

+∞⋃
p=k

Ap) = 0

2. On suppose que la série
∑
P (An) diverge et que les évènements (An) sont mutuellement indépendants. Montrer que :

P (

+∞⋂
k=0

+∞⋃
p=k

Ap) = 1

On pourra étudier P (∩+∞
p=kAp) et utiliser l’inégalité de convexité 1− x ≤ e−x sur [0, 1].

Ces deux résultats sont classiques et ils sont appelés premier et second lemme de Borel-Cantelli.

2 Variables aléatoires discrètes

2.1 Loi d’une variable aléatoire et premiers exemples fondamentaux

Définition Soient (Ω,A) un espace probabilisable et E un ensemble quelconque. On appelle variable aléatoire discrète toute
application X : Ω −→ E telle que : {

X(Ω) = {xi, i ∈ I} est fini ou infini dénombrable

∀ i ∈ I, X−1({xi}) ∈ A

En particulier, si E = R, on dit que X est une variable aléatoire discrète à valeurs réelles.

Notation Généralement, on adopte des notations probabilistes et on note :

• (X = xi) l’évènement X−1({xi}) = {ω ∈ Ω, X(ω) = xi},

• (X ∈ A) l’évènement X−1(A) = {ω ∈ Ω, X(ω) ∈ A}.

Ces variables aléatoires sont utiles et elles nous vont nous permettre de réinterpréter quantitativement des situations aléatoires
sur un nouvel espace probabilisé induit par X.

Soit (Ω,A, P ) un espace probabilisé et considérons X une variable aléatoire discrète. Alors, l’application PX : P(X(Ω)) −→ R
définie par :

PX : A 7−→ P (X ∈ A)

est une probabilité sur (X(Ω),P(X(Ω))) appelée loi de X.

Théorème 11 (loi d’une variable aléatoire discrète).

I On revient à la définition d’une mesure de probabilité et on utilise les propriétés de l’image réciproque.

Soit (Ω,A, P ) un espace probabilisé et considérons X une variable aléatoire discrète telle que :

X(Ω) = {xi, i ∈ I}

Alors, ((X = xi))i∈I désigne un système complet d’évènements sur Ω et pour tout A ∈ P(X(Ω)), et en notant IA = {i ∈
I, xi ∈ A},

PX(A) = P (X = A) =
∑
i∈IA

P (X = xi)

Corollaire 12 (probabilité d’un évènement sur P (X(Ω))).

Remarque Concrètement, connâıtre la loi d’une variable aléatoire discrète, c’est donc être capable d’identifier les valeurs
prises par X et de préciser le poids des évènements élémentaires pi = P (X = xi) tels que :

∀ i ∈ I, pi ≥ 0 et
∑
i∈I

pi = 1

Et encore une fois, quand I sera infini dénombrable, cela reviendra à étudier la convergence d’une série à termes positifs.
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Définition Soit (Ω,A, P ) un espace probabilisé. On dit alors que deux variables aléatoires discrètes X et Y suivent la même
loi si X(Ω) = Y (Ω) et pour tout évènement élémentaire {ωi} ⊂ X(Ω) = Y (Ω),

P (X = ωi) = P (Y = ωi)

Dans ce cas, on note de façon abusive X ∼ Y .

Remarques

1. Attention, cela ne signifie en aucun cas que X = Y , car même si elles se comportent de la même façon, elles peuvent
représenter des situations probabilistes complètement différentes !

2. Dans de nombreux exercices, on nous demandera de justifier que X suit une loi donnée et ainsi, on sera parfois amené à
reconnâıtre une situation courante, et pour laquelle X suit une loi de référence. Il est donc très important de maitriser
quelques modèles probabilistes de référence.

Définition Soit n ∈ N∗. On dit qu’une variable aléatoire X suit une loi uniforme sur J1, nK si :X(Ω) = J1, nK

∀ k ∈ J1, nK, P (X = k) =
1

n

Dans ce cas, on note X ∼ U(J1, nK).

Remarque Pour cette variable aléatoire, tous les évènements élémentaires ont donc la même chance de se réaliser : il s’agit
en fait de la probabilité uniforme.

Définition Soit p ∈]0, 1[. On dit qu’une variable aléatoire X suit une loi de Bernoulli de paramètre p si :{
X(Ω) = {0, 1}
P (X = 1) = p, P (X = 0) = q, avec q = 1− p

Dans ce cas, on note X ∼ B(p).

Remarque Plus généralement, les évènements (X = 1) et (X = 0) traduisent une épreuve de Bernoulli à deux issues :
ils seront appelés succès et échec. Ainsi, on utilisera ce modèle lorsque X rendra compte du succès ou non d’une expérience
aléatoire.

Définition Soit p ∈]0, 1[. On dit qu’une variable aléatoire X suit une loi binomiale de paramètres n, p si :{
X(Ω) = J0, nK
∀ k ∈ J0, nK, P (X = k) =

(
n
k

)
pkqn−k, avec q = 1− p

Dans ce cas, on note X ∼ B(n, p).

Remarque On rappelle qu’une telle variable aléatoire est associée à une situation très classique dans laquelle X représente
le nombre de succès lorsqu’on répète de façon indépendante une épreuve de Bernoulli : on utilisera donc ce modèle lorsque
X rendra compte du nombre de succès obtenus après n répétitions indépendantes d’une épreuve de la forme succès/échec.

Définition Soit p ∈]0, 1[. On dit qu’une variable aléatoire X suit une loi géométrique de paramètre p si :{
X(Ω) = N∗

∀ k ∈ N∗, P (X = k) = qk−1p, avec q = 1− p

Dans ce cas, on note X ∼ G(p).

Remarque Si on considère encore une suite d’épreuves de Bernoulli indépendantes, alors en notant X le rang du premier
succès et en posant Ak =”la k-ème épreuve est un succès”, on a par indépendance :

P (X = k) = P (A1 ∩ . . . ∩Ak−1 ∩Ak) =

k−1∏
i=1

P (Ai)P (Ak) = qk−1p

Autrement dit, on fera appel au modèle géométrique quand la variable aléatoire X rendra compte du temps d’attente associé
à un premier succès lorsqu’on répète de façon indépendante une épreuve de la forme succès/échec.
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Soit (Ω,A, P ) un espace probabilisé.

1. On considère X une variable aléatoire discrète sur Ω telle que X ∼ G(p), p ∈]0, 1[.
Alors, pour tout k ∈ N, P (X > k) = qk et ainsi,

∀ (k, `) ∈ N2, P(X>k)(X > k + `) = P (X > `) (∗)

On dit que X est une loi sans mémoire.

2. Réciproquement, considérons Y telle que Y (Ω) = N∗. Si de plus Y vérifie la condition (∗), alors Y suit une loi
géométrique de paramètre p = P (Y = 1).

Théorème 13 (caractérisation d’une loi géométrique).

I Pour le premier point, il suffit de décrire l’évènement (X > k) comme réunion d’évènements élémentaires, la formule
déécoule alors de la définition de la probabilité conditionnelle. Pour le second point, on cherche d’abord à obtenir une relation
de récurrence qui nous permettra d’obtenir P (Y = k).

Remarque En fait, si on voit X comme une durée de vie, on dit que X est sans mémoire car la probabilité de sa durée
de vie ne dépend pas du temps déjà passé... cela nous donne alors une autre façon d’utiliser la loi géométrique, pour des
situations dans lesquelles la réalisation d’un succès ne dépend pas des expériences précédentes.

Définition Soit λ > 0. On dit qu’une variable aléatoire X suit une loi de Poisson de paramètre λ si :X(Ω) = N

∀ k ∈ N, P (X = k) = e−λ
λk

k!

Dans ce cas, on note X ∼ P(λ).

Remarque Il s’agit encore une fois d’une variable aléatoire qui rend compte d’un nombre de succès... mais contrairement
aux autres modèles, il n’est pas simple d’interpréter les situations associées à une loi de Poisson car c’est une loi limite.

Soit (Ω,A, P ) un espace probabilisé, et considérons (Xn) une suite de variables aléatoires telles que Xn suit une loi binomiale
de paramètres n, pn vérifiant :

npn ∼
n→+∞

λ > 0

Alors, pour tout k ∈ N, limn→+∞ P (Xn = k) = e−λ
λk

k!
, et ainsi la suite (Xn) converge en loi vers une loi de Poisson.

Théorème 14 (approximation d’une loi de Poisson par une loi binomiale).

I On revient à la loi binomiale et on travaille sur le coefficient binomial afin de déterminer la limite à l’aide des fonctions
usuelles.

Remarque Par hypothèse, on a :

npn ∼ λ⇔ pn ∼
λ

n
−→ 0

Ainsi, si Xn désigne le nombre de succès d’un évènement rare lors d’un grand nombre de répétitions d’une épreuve de
Bernoulli, alors Xn peut être approchée par une loi de Poisson de paramètre λ... C’est pour cela que la loi de Poisson
est aussi appelée loi des évènements rares et elle rendra compte du nombre de succès dans des épreuves de la forme
succès/échec et ceci quand celui-ci a une faible probabilité de se réaliser.

2.2 Famille de variables aléatoires indépendantes

Définition Soit (Ω,A, P ) un espace probabilisé et considérons X,Y deux variables aléatoires discrètes telles que :

X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J}

On appelle loi du couple (X,Y ) la probabilité PX,Y définie sur P(X(Ω))× P(Y (Ω)) par :

PX,Y : (xi, yj) 7−→ P ((X = xi) ∩ (Y = yj))

Dans ce cas, les lois PX et PY associées aux variables aléatoires X et Y désignent les lois marginales.
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Soit (Ω,A, P ) un espace probabilisé et considérons X,Y deux variables aléatoires discrètes telles que :

X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J}

Alors, on a :

1. pour tout i ∈ I, P (X = xi) =
∑
j∈J PX,Y (xi, yj)

2. pour tout j ∈ J , P (Y = yj) =
∑
i∈I PX,Y (xi, yj)

Propriété 15 (relation avec les lois marginales).

I C’est immédiat et découle de la formule des probabilités totales. En effet, si (X = xi) désigne un évènement de P(X(Ω)),
alors les évènements (Y = yj)j∈J représentent un système complet d’évènements.

Remarques

1. On pourra retenir que la connaissance de la loi d’un couple de variables nous permet d’en déduire les lois marginales.
Par contre, les lois marginales ne nous permettront pas, en général, d’obtenir la loi du couple.

2. Très souvent, l’une des variables sera conditionnée par l’autre et ainsi, on peut par exemple écrire pour tout i ∈ I,

P (X = xi) =
∑
j∈J

PX,Y (xi, yj) =
∑
j∈J

P ((X = xi) ∩ (Y = yj)) =
∑
j∈J

P (Y = yj)P(Y=yj)(X = xi)

Et cette dernière égalité fait apparâıtre une loi conditionnelle : c’est la loi de X sachant que (Y = yj).

Exemple 9 On considère une suite d’épreuves de Bernoulli indépendantes et de paramètre p ∈]0, 1[. On note X le rang du
premier succès et Y le rang du second succès.

1. Déterminer la loi du couple (X,Y ).

2. En déduire les lois de X et Y .

Définition Soit (Ω,A, P ) un espace probabilisé et considérons X1, . . . , Xn des variables aléatoires discrètes telles que Xk(Ω) =
{xik , ik ∈ Ik}. On dit encore que :

• les variables aléatoires sont deux à deux indépendantes si pour tout (k, `) ∈ Ik × I`,

P ((Xk = xik ) ∩ (Xl = xil)) = P (Xk = xik )P (Xl = xil)

• les variables aléatoires sont mutuellement indépendantes si pour tout J ⊂ J1, nK :

P (∩k∈J(Xk = xik )) =
∏
k∈J

P (Xk = xik )

Remarque Par défaut, et sans aucune indication contraire, on pourra considérer que des variables aléatoires données
indépendantes dans un énoncé sont mutuellement indépendantes. En particulier, cela entrâıne évidemment qu’elles sont
deux à deux indépendants mais la réciproque est fausse !

Soit (Ω,A, P ) un espace probabilisé et considérons X,Y deux variables aléatoires discrètes telles que :

X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J}

Si de plus, X et Y sont supposées indépendantes, alors on a pour tout (i, j) ∈ I × J, PX,Y (xi, yj) = P (X = xi)P (Y = yj).
Autrement dit, la loi du couple est ici définie par les lois marginales.

Corollaire 16 (loi d’un couple de variables indépendantes).

Soient (Ω,A, P ) un espace probabilisé, X,Y deux variables aléatoires discrètes. Alors :

X et Y sont indépendantes ⇔ ∀ (A,B) ∈ P(X(Ω))× P(Y (Ω)), P ((X ∈ A) ∩ (Y ∈ B)) = P (X ∈ A)P (Y ∈ B)

Théorème 17 (caractérisation de deux variables aléatoires indépendantes).

I La réciproque est immédiate. Pour le sens direct, il suffit de définir les évènements (X ∈ A) = {xi, i ∈ IA} et (Y ∈ B) =
{yj , j ∈ JB} avant de calculer la probabilité de l’intersection.
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On pourra généraliser cette dernière propriété et ainsi, la probabilité de l’intersection d’évènements associés à un nombre fini de
variables aléatoires mutuellement indépendantes sera toujours donnée par le produit des probabilités.

Exemple 10 Soient N ∈ N∗ et p ∈]0, 1[. On pose q = 1− p.
On considère N variables aléatoires indépendantes X1, X2, . . . , XN définies sur un même espace probabilisé (Ω,A, P ) mutuellement
indépendantes et de même loi géométrique de paramètre p.

1. Soit i ∈ J1, NK et fixons n ∈ N∗. Déterminer P (Xi > n).

2. On considère la variable aléatoire Y = min(X1, X2, . . . , XN ).

(a) Soit n ∈ N∗. Calculer P (Y > n). En déduire P (Y ≤ n), puis P (Y = n).

(b) Préciser alors la loi de Y .

Soient (Ω,A, P ) un espace probabilisé et X,Y deux variables aléatoires discrètes indépendantes. On considère de plus f et
g deux applications telles que :

f : X(Ω) −→ R et g : Y (Ω) −→ R

alors f(X) et g(Y ) sont encore indépendantes.

Propriété 18 (transfert d’indépendance).

I On se ramène simplement au théorème précédent avec (A,B) ⊂ P(R)2.

Remarque Ce résultat est très pratique et encore une fois, il peut se généraliser. Autrement dit, quand on travaille avec
des variables aléatoires mutuellement indépendantes, on pourra retenir qu’on conserve l’indépendance par composition sur
ces variables :

Soit (Ω,A, P ) un espace probabilisé et considérons X1, . . . , Xn des variables aléatoires discrètes qu’on suppose mutuellement
indépendantes, p ∈ J1, n− 1K. Si de plus f, g désignent deux applications telles que :

f : X1(Ω)× . . .×Xp(Ω) −→ R et g : Xp+1(Ω)× . . . Xn(Ω) −→ R

alors f(X1, . . . , Xp) et g(Xp+1, . . . , Xn) sont encore indépendantes.

Corollaire 19 (lemme des coalitions).

2.3 Espérance d’une variable alétoire discrète réelle ou complexe

Définition Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X(Ω) = {xi, i ∈ I}.
Sous réserve d’existence, on appelle espérance mathématique le nombre réel défini par :

E(X) =
∑
i∈I

pixi, avec pi = P (X = xi)

Remarques

1. On peut alors observer que :

E(X) =
∑
i∈I

pixi =

∑
i∈I pixi∑
i∈I pi

Ainsi, l’espérance mathématique désigne la moyenne des valeurs prises par X pondérée par les probabilités des
évènements élémentaires.

2. Dans le cas particulier où X prend un nombre fini de valeurs, la somme donnée est finie et on pourra toujours calculer
l’espérance associée. Dans les autres cas, il s’agira d’abord de vérifier que la série

∑
pixi est convergente, ou plus souvent

absolument convergente : on pourra même noter X ∈ L1 pour signifier que cette série est absolument convergente.

Exemple 11 Les questions suivantes ne sont pas forcément liées.

1. Déterminer l’espérance de X dans les cas suivants :

(a) X ∼ U(J1, nK)

(b) X ∼ B(p) avec p ∈]0, 1[

(c) X ∼ B(n, p) avec p ∈]0, 1[

(d) X ∼ G(p) avec p ∈]0, 1[

(e) X ∼ P(λ) avec λ > 0
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2. M. Toutlemonde habite dans un immeuble dont la porte d’entrée est sécurisée par un code à 4 chiffres dont chacun est
compris entre 0 et 9. Malheureusement, il se trouve devant cette porte et il en a oublié le code.

(a) En essayant un code au hasard, quelle est la probabilité de tomber sur le bon code ?

(b) M. Toutlemonde décide de trouver le bon code en procédant de la manière suivante : il essaye un code au hasard choisi
par les codes non encore testés. On note X la variable aléatoire égale au nombre de codes testés jusqu’à obtenir le bon
code. Déterminer la loi de X et donner son espérance.

(c) A la place de la stratégie précédente, M. Toutlemonde essaye des codes au hasard, sans se soucier du fait qu’il les ait
déjà essayés ou non. On note encore X la variable aléatoire égale au nombre de codes testés jusqu’à obtenir le bon
code. Déterminer la loi de X et donner son espérance.

Soient (Ω,A, P ) un espace probabilisé, X une variable aléatoire discrète et on considère f : X(Ω) −→ K telle que∑
i∈I |pif(xi)| converge. Alors, on a :

E(f(X)) =
∑
i∈I

pif(xi), avec pi = P (X = xi)

Théorème 20 (de transfert).

I Pour simplifier les écritures, on pose Y = f(X) et en notant Ik = {i ∈ I, f(xi) = yk}, on peut réécrire la somme de
droite par paquets à l’aide du théorème de sommation par paquets.

Soient (Ω,A, P ) un espace probabilisé et X,Y deux variables aléatoires discrètes telles que :

X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J}

On suppose de plus que X,Y ∈ L1. Alors, X et Y admettent une espérance finie et on vérifie que :

1. l’espérance est linéaire :
∀ (a, b) ∈ R2, E(aX + bY ) = aE(X) + bE(Y )

Et en particulier, avec Y = 1, on a E(aX + b) = aE(X) + b.

2. l’espérance est positive, c’est à dire que pour des variables réelles : X ≥ 0⇒ E(X) ≥ 0.
Et en particulier, pour une variable à valeurs positives, E(X) = 0⇔ X = 0 presque sûrement.

3. l’espérance est croissante, c’est à dire que pour des variables réelles :

X ≤ Y ⇒ E(X) ≤ E(Y )

Et en particulier, on a l’inégalité : |E(X)| ≤ E(|X|).

Propriété 21 (de l’espérance).

I Seul le premier point est délicat, on applique le théorème de transfert après en avoir vérifié les hypothèses. Pour cela, on
pourra montrer la sommabilité des familles (pijxi) et (pijyj) à l’aide du théorème de Fubini.

Soient (Ω,A, P ) un espace probabilisé et X,Y deux variables aléatoires discrètes telles que :

X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J}

On suppose de plus que X,Y ∈ L1 et qu’elles sont indépendantes. Alors, XY admet une espérance finie et on a :

E(XY ) = E(X)E(Y )

Théorème 22 (espérance du produit de variables mutuellement indépendantes).

I On revient encore au théorème de transfert à condition d’en vérifier les hypothèses. Pour cela, on montre que la famille
(pijxiyj) est sommable à l’aide du théorème de Fubini.

Remarque Par récurrence, et en faisant appel au lemme des coalitions, il est alors très facile d’étendre ce dernier résultat
de sorte que pour toute famille de variables mutuellement indépendantes X1, . . . , Xn ∈ L1 :

E(X1 . . . Xn) =
n∏
k=1

E(Xk)
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Exemple 12 On considère une variable aléatoire discrète X à valeurs dans N. Montrer que :

X admet une espérance finie ⇔
∑
n≥0

P (X > n) converge

et que dans ce cas, E(X) =
∑+∞
n=0 P (X > n) =

∑+∞
n=1 P (X ≥ n).

2.4 Variance d’une variable aléatoire réelle, écart type et covariance

Définition Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X(Ω) = {xi, i ∈ I}.
Sous réserve d’existence, on appelle alors :

• variance le nombre réel défini par :

V (X) = E((X − E(X))2) =
∑
i∈I pi(xi − E(X))2, avec pi = P (X = xi)

• écart-type le nombre réel positif σ tel que : σ(X) =
√
V (X).

Remarques

1. On peut alors observer que :

V (X) =
∑
i∈I

pi(xi − E(X))2 =

∑
i∈I pi(xi − E(X))2∑

i∈I pi

Ainsi, la variance n’est rien d’autre que la moyenne des écarts au carré par rapport à l’espérance et pondérée par les
probabilités des évènements élémentaires. On pourra donc retenir que la variance et l’écart-type sont des indicateurs
de la dispersion des valeurs prises par X autour de sa moyenne.

2. Dans le cas particulier où X prend un nombre fini de valeurs, la somme donnée est finie et on pourra toujours calculer la
variance associée. Dans les autres cas, il s’agira d’abord de vérifier que la série

∑
pix

2
i est convergente, ou plus souvent

absolument convergente : on pourra même noter X ∈ L2 pour signifier que cette série est absolument convergente.

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L2. Alors, X admet une espérance
finie et une variance finie.

Propriété 23 (condition suffisante d’existence).

I Posons m = E(X), on procède alors en deux temps et on montre à chaque fois que les séries associées sont bien absolument
convergentes par simple comparaison sur les termes généraux.

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L2. Alors, la variance est aussi égale
à :

V (X) = E(X2)− (E(X))2 = E(X(X − 1)) + E(X)− (E(X))2

Corollaire 24 (formule d’Huygens pour le calcul de la variance).

Exemple 13 Déterminer la variance de X dans les cas suivants :

1. X ∼ U(J1, nK)

2. X ∼ B(p) avec p ∈]0, 1[

3. X ∼ B(n, p) avec p ∈]0, 1[

4. X ∼ G(p) avec p ∈]0, 1[

5. X ∼ P(λ) avec λ > 0

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L2. Alors, on a :

(i) V (X) ≥ 0. En particulier, V (X) = 0⇔ X est constante presque sûrement.

(ii) ∀ (a, b) ∈ R2, V (aX + b) = a2V (X) + 0

Propriété 25 (de la variance).
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I Il suffit de revenir à la définition de la variance et d’utiliser les propriétés de l’espérance mathématique.0

Définition Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète. On dit que :

• la variable aléatoire X est centrée si E(X) = 0.

• la variable aléatoire X est réduite si V (X) = 1.

Soient (Ω,A, P ) un espace probabilisé discret et X une variable aléatoire discrète telle que X ∈ L2. On pose m = E(X) et

σ = σ(X) qu’on suppose non nul. Alors, la variable aléatoire définie par
X −m
σ

est centrée et réduite.

Théorème 26 (construction d’une variable centrée et réduite).

I Le résultat découle directement des propriétés de l’espérance et de la variance démontrées plus haut.

Soit (Ω,A, P ) un espace probabilisé et considérons X,Y deux variables aléatoires discrètes telles que X,Y ∈ L2. Alors, XY
admet une espérance finie et on peut définir le nombre suivant appelé covariance de X et Y :

Cov(X,Y ) = E ((X − E(X))(Y − E(Y )))

Théorème 27 (existence et définition de la covariance).

I Avec ces hypothèeses, on rappelle que X,Y ∈ L1 et on peut utiliser l’inégalité de Young pour majorer le terme général de
la série

∑
|pijxiyj |.

Soient (Ω,A, P ) un espace probabilisé et X,Y deux variables aléatoires discrètes telle que X,Y ∈ L2. Alors, on peut aussi
écrire :

Cov(X,Y ) = E(XY )− E(X)E(Y )

De plus, on vérifie que :

1. la covariance est une forme bilinéaire symétrique et positive ;

2. et si de plus X et Y sont indépendantes, alors on a Cov(X,Y ) = 0 et on dit que les variables sont non corrélées.

Propriété 28 (formule d’Huygens pour le calcul de la covariance).

I Dans le premier point, il suffit de développer la formule de la covariance et d’utiliser les propriétés de l’espérance. Les
résultats suivants découlent immédiatement des propriétés de l’espérance.

Remarque On fera attention, il s’agit bien d’une condition nécessaire et il existe des couples de variables de covariance
nulle, sans pour autant qu’elles soient indépendantes.
Par exemple, il suffit de considérer X,Y deux variables aléatoires telles que X ∼ U(J−1, 1K) et Y = 1 si X = 0, Y = 0 sinon.

Soient (Ω,A, P ) un espace probabilisé et X,Y deux variables aléatoires discrètes telles que X,Y ∈ L2. Alors :

(i) la variance n’est pas linéaire : ∀ a, b ∈ R, V (aX + bY ) = a2V (X) + b2V (Y ) + 2abCov(X,Y )

(ii) En particulier, si X1, . . . , Xn désignent des variables aléatoires discrètes telles que Xi ∈ L2, alors :

V (X1 + . . .+Xn) = V (X1) + . . .+ V (Xn) + 2
∑

1≤i<j≤n Cov(Xi, Xj)

Si de plus, elles sont mutuellement indépendantes :

V (X1 + . . .+Xn) = V (X1) + . . . V (Xn)

Propriété 29 (variance d’une somme de variables aléatoires).

I On revient à la formule d’Huygens pour le calcul de la variance, puis on utilise les propriétés de l’espérance. Pour le second
point, on peut procéder par récurrence sur n ≥ 2.
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Exemple 14 Soient n ∈ N∗ et p ∈ [0, 1]. On considère X1, . . . , Xn des variables aléatoires mutuellement indépendantes et
identiquement distribuées telles que pour tout i ∈ J1, nK, Xi ∼ B(p), et on définit :

Sn = X1 + . . .+Xn

1. Montrer que Sn ∼ B(n, p).

2. Retrouver alors l’espérance et la variance de Sn.

3 Applications

3.1 Fonction génératrice d’une variable aléatoire

Définition Soit (Ω,A, P ) un espace probabilisé et considérons X une variable aléatoire discrète qu’on suppose à valeurs dans N.
Le terme général étant borné pour t = 1, la série entière

∑
P (X = n)tn a un rayon de convergence R ≥ 1, et on appelle alors

fonction génératrice de X la fonction GX définie sur ]−R,R[ par :

GX(t) = E(tX) =

+∞∑
k=0

P (X = k)tk

Soit (Ω,A, P ) un espace probabilisé et considérons X une variable aléatoire discrète qu’on suppose à valeurs dans N.
Alors, la série entière

∑
P (X = n)tn converge normalement sur [−1, 1], et ainsi :

1. GX est au moins définie et continue sur [−1, 1] et donc, pour tout t ∈ [−1, 1], GX(t) =
∑+∞
k=0 P (X = k)tk.

2. GX est de classe C∞ sur ]− 1, 1[ et pour tout t ∈ ]− 1, 1[, et pour tout n ∈ N∗,

G
(n)
X (t) =

+∞∑
k=n

P (X = k)k(k − 1) . . . (k − n+ 1)tk−n

Propriété 30 (convergence de la série génératrice associée et conséquences).

I On travaille sur la norme infinie du terme général. Le reste découle directement des théorèmes sur les séries entières.

Remarque En fait, en tant que somme d’une série entière, on peut même étendre la régularité de GX sur l’intervalle ]−R,R[.
C’est notamment le cas des variables aléatoires finies pour lesquelles GX est définie sur R tout entier : on a là des fonctions
polynomiales.

Soient (Ω,A, P ) un espace probabilisé, X une variable aléatoire discrète qu’on suppose à valeurs dans N, et notons GX sa
fonction génératrice.
Alors, la fonction génératrice détermine la loi de X, c’est à dire que pour tout n ∈ N,

P (X = n) =
G

(n)
X (0)

n!

On en déduit que deux variables aléatoires à valeurs dans N ont la même loi si et seulement si elles ont la même fonction
génératrice.

Corollaire 31 (la fonction génératrice détermine la loi de X).

I Cela provient directement de l’unicité des coefficients dans le développement en série entière. La loi étant entièrement
déterminée par GX , on en déduit le second point.

Il faudra donc être capable d’identifier ou de retrouver rapidement les fonctions génératrices associées à nos lois usuelles.

Exemple 15 Déterminer la fonction génératrice GX dans les cas suivants :

1. X ∼ U(J1, nK)

2. X ∼ B(p) avec p ∈]0, 1[

3. X ∼ B(n, p) avec p ∈]0, 1[

4. X ∼ G(p) avec p ∈]0, 1[

5. X ∼ P(λ) avec λ > 0
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Soient (Ω,A, P ) un espace probabilisé, X1, . . . , Xn des variables aléatoires discrètes à valeurs dans N, et notons GXk leur
fonction génératrice. On suppose de plus que ces variables aléatoires sont mutuellement indépendantes et ainsi,

∀ t ∈ [−1, 1], GX1+...+Xn(t) =

n∏
k=1

GXk (t)

Propriété 32 (fonction génératrice de la somme de variables mutuellement indépendantes).

I On revient simplement à la définition de la fonction génératrice et on rappellera les propriétés de l’espérance.

Soit (an) une suite réelle à valeurs positives telle que
∑
an converge. On considére

∑
ant

n la série entière associée de rayon
de convergence R ≥ 1, et on note f sa somme sur ]−R,R[.
Alors, f est dérivable en 1 si et seulement si la série

∑
nan converge, et dans ce cas, si celle-ci est dérivable en 1 :

f ′(1) =

+∞∑
n=1

nan

Théorème 33 (caractérisation de la dérivabilité en 1 pour la somme d’une série entière de rayon R ≥ 1).

I On procède par disjonction des cas : si R > 1, alors les résultats sur les séries entières nous donnent directement les deux
assertions et l’égalité. Si par contre R = 1, on montre d’abord que t 7−→ f(t)−f(1)

t−1
est croissante sur [0, 1[ avant de justifier

l’équivalence des deux assertions.

Soient (Ω,A, P ) un espace probabilisé, X une variable aléatoire discrète qu’on suppose à valeurs dans N, et notons GX sa
fonction génératrice.
Alors, X ∈ L1 si et seulement si GX est dérivable en 1 et dans ce cas, on en déduit que :

E(X) = G′X(1)

Corollaire 34 (calcul de l’espérance).

I Cela est immédiat : il suffit d’exploiter le théorème précédent avec la série génératrice associée à X.

Soient (Ω,A, P ) un espace probabilisé, X une variable aléatoire discrète qu’on suppose à valeurs dans N, et notons GX sa
fonction génératrice.
Alors, X ∈ L2 si et seulement si GX est deux fois dérivable en 1 et dans ce cas, on en déduit que :

E(X(X − 1)) = G′′X(1) et ainsi, V (X) = E(X(X − 1)) + E(X)− (E(X))2 = G′′X(1) +G′X(1)− (G′X(1))2

Corollaire 35 (calcul de la variance).

I On procède par double implication, et on veillera à exploiter le même théorème en considérant la série génératrice dérivée.

Exemple 16 Les questions suivantes sont indépendantes.

1. On considère X,Y deux variables aléatoires discrètes telles que :

X ∼ G(p) avec p ∈]0, 1[, et Y ∼ P(λ) avec λ > 0

(a) Montrer que pour tout t ∈ [−1, 1], GX(t) =
pt

1− qt et GY (t) = eλ(t−1).

(b) Retrouver alors l’espérance et la variance pour chacune de ces variables.

2. On suppose que X1, . . . , Xn désignent des variables aléatoires mutuellement indépendantes et telles que pour tout k ∈ J1, nK,

Xk ∼ P(λk) avec λk > 0

Etablir que X1 + . . .+Xn suit encore une loi de Poisson dont on précisera le paramètre. On pourra proposer deux méthodes.
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3.2 Inégalités probabilistes et loi faible des grands nombres

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L1. Alors, on a :

∀ ε > 0, P (|X| ≥ ε) ≤ E(|X|)
ε

Propriété 36 (inégalité de Markov).

I On note J = {i ∈ I, |xi| ≥ ε} et il suffit alors de minorer l’espérance de |X|.

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L2 converge. Alors, on a :

∀ ε > 0, P (|X − E(X)| ≥ ε) ≤ V (X)

ε2

Propriété 37 (inégalité de Bienaymé-Tchebychev).

I On applique l’inégalité de Markov à la variable (X − E(X))2 avec ε2.

Exemple 17 Soit f une fonction réelle continue sur [0, 1]. Pour n ∈ N∗, on note Pn le polynôme défini par :

Pn(x) =

n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k

On fixe x ∈ ]0, 1[. On considère une suite de variables aléatoires (Xn) mutuellement indépendantes et de même loi de Bernoulli
de paramètre x, et on pose Sn =

∑n
k=1Xk.

1. Donner une expression de E(f(Sn
n

)).

2. Pour tout α > 0, on définit δ(α) = sup{|f(x)− f(y)|, x, y ∈ [0, 1], |x− y| ≤ α}. Démontrer que :

sup
x∈[0,1]

|Pn(x)− f(x)| ≤ δ(α) +
2||f ||∞
nα2

3. En déduire que la suite (Pn) converge uniformément vers f sur [0, 1].

On retrouve là une preuve probabiliste du théorème de Stone-Weierstrass.

Soient (Ω,A, P ) un espace probabilisé discret et X1, . . . , Xn des variables aléatoires discrètes mutuellement indépendantes et
identiquement distribuées. On suppose de plus qu’elles possèdent une espérance finie et une variance finie notées m = E(Xi)
et v = V (Xi).
De plus, si on note Sn = X1 + . . .+Xn, alors pour tout ε > 0,

P (|Sn
n
−m| ≥ ε) −→

n→+∞
0

On dit aussi que Sn
n

converge en probabilité vers m.

Théorème 38 (loi faible des grands nombres).

I C’est immédiat : il suffit d’appliquer l’inégalité de Bienaymé-Tchebychev à Sn
n

avant de passer à la limite...

Remarque Ce résultat a en fait beaucoup de sens, car il permet de justifier la première approche fréquentiste qu’on a
pu vous donner du calcul de la probabiblité d’un évènement.

En effet, si on étudie l’apparition d’un caractère dans une population de n individus, on peut modéliser cette situation
par un échantillon (X1, . . . , Xn), où pour tout i ∈ J1, nK, Xi ∼ B(p).

Dans ce cas, fn =
Sn
n

représente la fréquence d’apparition du caractère donné et on montre par ce théorème que :

P (|fn − p| ≥ ε) −→
n→+∞

0

Autrement dit, quand on augmente la taille de l’échantillon, celle-ci ne s’écarte pas trop de la probabilité p associée. Et ainsi,
la fréquence statistique nous donne une bonne approximation de la probabilité qu’un évènement se réalise.
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