Chapitre 10

Variables aléatoires discrétes

Ce chapitre est difficile, car il faut avant tout comprendre comment on formalise le
calcul des probabilités dans un espace probabilisable. Ici, on reviendra rapidement
sur les espaces probabilisés discrets, avant d’introduire la notion de variable aléatoire
discréte. Si celle-ci est riche, c’est d’abord parce qu’elle nous offrira de nombreuz
problémes faisant intervenir d’autres chapitres, que ce soit en algébre ou en analyse.
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Pour aller plus loin

Depuis quelques années maintenant, on retrouve a 1’écrit de nombreux problemes mettant en jeu les espaces probabilisés, du
théoréeme de Perron-Frobenius au théoréme de Moivre-Laplace, en passant par ’étude de marches aléatoires... c’est donc un
chapitre incontournable et il faudra vite prendre 'habitude de manipuler le formalisme sous-jacent.
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1 Espaces probabilisés

Quand on étudie une expérience aléatoire, on cherche tres souvent a construire un modeéle probabiliste qui pourrait lui
étre associé : pour cela, on définit généralement un univers (2, I’ensemble des résultats de ’expérience et on cherche a définir
une mesure de probabilité P qui & tout événement A € P(Q) renvoie un poids positif qui pourra rendre compte de la
probabilité que celui-ci se réalise.

Remarques

1. Une mesure de probabilité sera donc souvent définie sur P(€2) ou une partie de P(2), et il s’agira de bien faire la
différence entre ces deux ensembles :

Q € P(Q), mais Q # P(Q)
Et si Q est de cardinal fini n € N*, on rappelle que card(P(€2)) = 2". Par exemple, on pourra considérer :

{Q =[1,3] ={1,2,3}
P(Q) =10, {1}, {2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}

2. Suivant les expériences aléatoires considérées, 'univers {2 peut étre infini et méme non dénombrable. Dans ce dernier
cas, il est tres difficile de décrire tous les évenements et donc de définir correctement une mesure de probabilité sur
P(€2). Le plus souvent, on préferera alors travailler sur une partie de P(£2), plus simple et qui nous permettra de décrire
les événements a 'aide d’opérations ensemblistes : c¢’est pour cela qu’on introduit la notion de tribu des événements.

1.1 Premieéres définitions et propriétés sur un espace probabilisé

Définition Soit 2 un ensemble non vide. On appelle alors tribu des événements tout sous-ensemble A de P () tel que :

e NcA
o A est stable par passage au complémentaire, c’est & dire : VA€ A, A€ A
e A est stable par réunion finie ou infinie dénombrable, c’est & dire que pour toute suite (A,) finie ou infinie de A",

UneNAn cA

Muni d’une telle tribu, on dit que (2,.4) est un espace probabilisable et les éléments de A désignent encore les événements
de 'expérience aléatoire.

{Propriété 1 (immédiate).]

Soit (£2,.4) un espace probabilisable, alors on a également :
1.pecA

2. A est stable par intersection finie ou infinie dénombrable, c’est & dire que pour toute suite (A,,) finie ou infinie de AV,

mnGNAn S A

Définition Soit (€2,.4) un espace probabilisable. On appelle systéme complet d’événements toute famille d’événements finie,
ou infinie dénombrable (A;):er tels que :

{V(i,j) €I’ i+#j, AinA; =0, c’est a dire que ces ensembles sont disjoints ou que ces événements sont incompatibles

UZ.GI A; = Q, c’est a dire qu’ils recouvrent 2

On peut aussi dire que ces éveénements forment une partition de 2 et on pourra noter : Q = ;e A;.

Définition Soit (€2,.4) un espace probabilisable. On appelle enfin mesure de probabilité ou plus simplement probablité toute,
application P : A — R telle que :

{P(Q) =1

P est o-additive, autrement dit pour toute suite finie ou infinie dénombrable d’événements (A;)ier incompatibles :

P(UicrAs) = > P(Ay)

iel

Dans ce cas, on dit que (2, A, P) est un espace probabilisé.
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Remarque La plupart du temps, on travaillera dans le cas ou €2 désigne un ensemble fini ou infini dénombrable, c’est a dire
qu’on aura :
Q = Uier{wi}, avec I un ensemble d’indices au plus dénombrable

Les événements élémentaires {w;} forment ici une partition de 2, et en considérant la tribu P(2), appelée tribu discrete,
on peut toujours construire une mesure de probabilité en définissant P une application o-additive et pour laquelle on affecte
a chacun de ces événements élémentaires un poids p; > 0 tel que :

Zpi =1
iel

En particulier, quand I sera infini dénombrable, cela reviendra a étudier la convergence d’une série a termes positifs.

{Propriété 2 (sur un espace probablisé).]

Soit (£2,.4, P) un espace probabilisé. Alors, on a :
1. pour toute famille finie Ay,..., A, d’événements incompatibles de A, P(A; U...UA,) =" P(A).
2. P(§)=0.
3. pour tout A € A, P(A) =1 — P(A).

4. pour tout couple (A4, B) € A? tel que A C B, P(B\A) = P(B) — P(A). Et en particulier, P(A) < P(B) : 'application
est donc croissante au sens de l'inclusion.

5. pour tout couple (4, B) € A*, P(AU B) = P(A)+ P(B) — P(AN B).

» A chaque fois, on revient a une réunion disjointe d’événements bien choisis et on invoque la o-additivité de P.

Remarque En fait, cette derniére propriété nous permet de montrer que globalement pour toute famille finie d’événements,
on a toujours 'inégalité :

P(A1U...UA,) < P(A)
i=1
Mais si on le souhaite, on peut aussi généraliser la formule obtenue. Par exemple, par associativité, on a :
P(A1UA2UA3) = P((A1UA2)UA3) = P(A1UA2)+P(As)—P((A1UA2)NA3s) = P(A1UA2)+P(As)—P((A1NAs)U(A2NAs))
= P(A1) -|—P(A2) +P(A3) — P(Al mAg) —P(A1 ﬁAg) — P(AQ ﬂAg) +P(A1 N As ﬂA3)

C’est un cas particulier de la formule du crible de Poincaré qu’on peut établir par récurrence sur n > 2 de sorte que :

n

PULA) =) | (=D > P(Njer4;)

k=1 JC[1,n],Card(J)=k

{Théoréme 3 (de la limite monotone pour une suite d’événements).}

Soit (€2,.A, P) un espace probabilisé et considérons (A,) € A" une suite d’événements.

1. Si on suppose de plus que (Ay) est croissante, c’est & dire que pour tout n € N, A,, C Apn41, alors :

P(Uf29A,) = lim P(A,)

n——+oo

2. Si on suppose de plus que (A,) est décroissante, c’est a dire que pour tout n € N, A,,11 C A,, alors :

P(NF%A,) = lim P(A,)

n—-+oo

» Pour le premier point, on pose Bp = Ap\An—1 et on montre que (Br) désigne une suite d’événements incompatibles tels
que U:i%Bn = Uii%An, on en déduit la valeur par o-additivité. Pour le second point, il suffit de passer au complémentaire.

www.cpgemp-troyes.fr 3


http://www.cpgemp-troyes.fr/

Chapitre 10
MP - Lycée Chrestien de Troyes Variables aléatoires discrétes

{Corollaire 4 (conséquences du théoréme de la limite monotone).]

Soit (€2,.4, P) un espace probabilisé et considérons (A,) € A" une suite d’événements. Alors, on a plus généralement :
1. P(UFSAn) = limp— 100 P(UR_oAx)

2. P(NT2A,) = limy—s 4 oo P(N7_oAk)

» On introduit ici les suites B, = Uj_oAk et Cn, = Ni_oAx et on exploite le théoréme de la limite monotone pour une suite
d’événements.

Remarque Ce dernier résultat nous permet alors de prolonger par passage a la limite 'inégalité obtenue pour la probablité
d’une réuion d’événements, et ainsi pour toute suite (A,) € AY, on retiendra :

+oo +oo
P(|JAr) <D P(A)

avec 3120 P(Ai) € Ry U {+0o}. Cette inégalité dans R est aussi appelée inégalité de Boole et elle nous donne ainsi une
majoration pour toute réunion dénombrable d’événements.

Définition Soit (€2, .4, P) un espace probabilisé. On rappelle enfin que pour tout éveénement A € A :
e A est dit négligeable si P(A) = 0.

e A est dit presque siir ou presque certain si P(A) = 1.

Exemple 1 On effectue une suite infinie de lancers d’une piece équilibrée. On note pour tout n € N*, A,, I’événement ”au cours
des n premiers lancers, on a obtenu au moins une fois pile”.

Quelle est la probabilité de I’événement E' = ”on a obtenu au moins une fois pile” ?

1.2 Cas particulier des espaces probabilisés discrets

{Théoréme 5 (mesure de probabilité sur un univers au plus dénombrable).}

Soit £ un ensemble fini ou infini dénombrable tel que Q2 = U;er{w;}, et considérons (p;)ier une famille de nombres réels tels
que :
Viel, p, >0et sz‘:l
iel
Alors, il existe une unique probabilité P sur (2, P(2)) telle que pour tout ¢ € I, P({w;}) = p;. Cette application est définie
pour tout A € P(§2) par :
P(A)= > pi, avec Ia = {i € I,w; € A}

i€l

» On procede par analyse-synthése et on reviendra a la définition d’une mesure de probabilité : on pourra d’ailleurs invoquer
le théoréme de sommation par paquets pour obtenir la o-additivité.

Exemple 2
1. Fixons p €]0, 1] et on définit pour tout n € N*,
po=(1-p)"""p
Montrer que (pn) définit une mesure de probabilité sur (N*, P(N")).

2. Fixons A > 0 et on définit pour tout n € N,
A"

Pn =€ v
n!

Montrer que (pn) définit une mesure de probabilité sur (N, P(N)).

3. On se place dans N* et on définit pour tout n € N*,

1

b= n(n+1)

(a) Montrer que (p,) définit une mesure de probabilité sur (N*, P(N*)).

(b) On note P I'unique probabilité associée & la suite (p,). Déterminer la probabilité qu’un entier soit pair ?
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Définition Soit n € N*. On se place dans le cas particulier ot Q@ = {w1,...,wn} est un ensemble fini et on note encore A = P(Q).
On appelle alors probabilité uniforme la probabilité P : A — Ry définie par :
vie L, Pl = —
i ,n], wi}) = ———
card ()
d(A
de sorte que pour tout événement A € A, P(A) = L().
card(Q)

Remarque Les espaces probabilisés finis, munis de la probabilité uniforme, nous permettent de modéliser les situations les
plus courantes, et il sera alors tres simple de déterminer la probabilité d’'un éveénement A, a condition d’étre capable de
dénombrer les éléments de A. D’ailleurs, ce seront souvent des exercices de dénombrement plutot que des exercices de
probabilités...

Pour cela, on peut rappeler que :
e le nombre de fagons de choisir k éléments distincts dans un ensemble a n éléments est donné par le coefficient binomial:

n n!

(k)= Kl(n — k)!

e dans le cas particulier ou il faudra tenir compte de I'ordre de ces k éléments, on n’hésitera pas a multiplier le coefficient
(%) par k!, le nombre de permutations de ces k éléments et ainsi, le nombre d’arrangements de k éléments distincts
dans un ensemble a n éléments est donné par :

n!

kl(x) = n—k)!

Exemple 3 (Probléme des anniversaires)

Des étudiants au nombre de n sont réunis dans un amphithéatre.

Quelle est la probabilité qu’au moins deux étudiants aient leur anniversaire le méme jour ? On suppose que qu’aucun étudiant
n’est né le 29 février et que n < 365.

Exemple 4 (Probléme des rencontres)

Soit n > 2. Lors d’un bal auquel participent n couples, le choix de sa cavaliere pour la premiere danse se fait au hasard. La
probabilité pour un danseur de danser avec sa femme est donc 1/n (assez faible lorsque n est grand).

Malgré tout, montrer qu’il existe un rang a partir duquel la probabilité qu’il y ait au moins une rencontre entre un danseur et sa
femme est supérieure ou égale a la probabilité qu’il n’y en ait pas ?

Pour tout ¢ € [1,n], on pourra noter A; ="le danseur i se retrouve avec sa femme”.

Exemple 5 (CCINP 104)
Soit n > 3. On dispose de n boules numérotées de 1 & n et d'une boite formée de 3 compartiments numérotées de 1 a 3.
On lance simultanément les n boules et elles viennent toutes se ranger aléatoirement dans les 3 compartiments.

1. Déterminer la probabilité qu’il y ait deux compartiments vides ? la probabilité qu’il y ait un seul compartiment vide ?
2. En déduire la probabilité qu’il n’y ait aucun compartiment de vide.
Exemple 6 (Nombre de dérangements)
On note pour tout (n,k) € N? tel que & < n, F, 1 le nombre de permutations de [1,n] ayant exactement k points fixes et on

définit le nombre de dérangements pour tout n € N* par a,, = F, 0.
Et on convient que ap = 1.

1. Montrer que pour tout (n,k) € N2 tel que k < n, Fnp = (Z) k. En déduire que pour tout n € N, n! =377 (Z) Q.

AN 2.9 o5 Qn
2. On consideére la série entiere —'z" et on note R son rayon de convergence, S sa somme.
n!

=z

(a) Etablir que R > 1 et que pour tout z € C, |z| < 1, S(z) = 16 .
—z
s n  (=DF
(b) En déduire que pour tout n € N, an =n!> ) | T
1
(c) Justifier alors que pour tout n > 2, ap = E(i -+ 5) On pourra calculer oy, — nl/el.
e

3. On choisit au hasard une permutation de S,, n > 2.
Quelle est la probabilité P(D,) que celle-ci soit un dérangement ? Que peut-on dire de lim;,— o0 P(Dy) ?
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1.3 Probabilités conditionnelles et indépendance

{Théor‘eme 6 (définition de la probabilité conditionnelle).}

Soit (£2,.4, P) un espace probabilisé et considérons A € A tel que P(A) > 0. Alors, 'application P4 : A — R définie par :

P(ANB)

Py :B+— P(A)

est une probabilité sur (£2,.4) appelée probabitité conditionnelle sachant A. De plus, pour tout événement B, on notera
souvent P4(B) ou P(B|A) la probabilité que B se réalise sachant que I’événement A s’est réalisé.

» On revient simplement a la définition d’une mesure de probablité.

Propriété 7 (formule des probabilités composées).]

Soit (£2, .4, P) un espace probabilisé. Alors, pour toute famille finie d’événements A, ..., A, tels que P(A1N...NA,_1) #0,
on a :

P(Al Nn...N An) = P(A1)PA1 (AQ)PAlmA2 (Ag) - PAlﬁ~~~ﬁAn—1 (An)

» On peut procéder de plusieurs fagons : par récurrence ou alors, on factorise par P(Ai1) et on tente de reconnaitre un
produit télescopique.

{Propriété 8 (formule des probabilités totales).]

Soit (€2,.A, P) un espace probabilisé et considérons (A;)icr un systeme complet d’événements de sorte que = U;erA;. Si
de plus, pour tout 7 € I, P(A;) > 0, alors pour tout événement B € A,

P(B)=) P(BNA)=>)_ P(A)Pa,(B)

i€l el

» (C’est immédiat : cela découle de la partition donnée par le systéme complet d’événements.

Remarque On peut aussi étendre cette formule lorsque certains événements du systéme vérifient P(A4;) = 0. En effet,
comme BN A; C A;, alors pour ces indices :

P(BNA;)=0
Ainsi, en convenant que dans ce cas, P(A;)Pa,(B) = 0, on obtient la formule des probabilités totales pour tout systéme

complet d’évenements.

Cette formule des probabilités totales est tres utile : c’est souvent elle qui nous donnera la relation de récurrence dans ’étude de
certains processus de Markov, ces situations pour lesquelles I’état a 'instant n + 1 ne dépend que de I’état a l'instant n.

Exemple 7 Une municipalité souhaite proposer un service de véhicules en libre service. Lors d’une premiere expérience, on
installe quelques véhicules en 3 lieux stratégiques de la ville : les places A, B et C'. Avec ces véhicules, on peut effectuer un trajet
vers I'une des deux autres places et apres quelques mois, on observe les résultats suivants :

e si un véhicule est en A, il se déplace vers B avec une probabilité 3/4 et vers C avec une probabilité 1/4 ;
e si un véhicule est en B, il se déplace vers A avec une probabilité 3/4 et vers C' avec une probabilité 1/4 ;

e si un véhicule est en C, il se déplace vers B avec une probabilité 3/4 et vers A avec une probabilité 1/4.

On s’intéresse alors au déplacement d’un véhicule. Pour tout n € N, on note A,, B, ou C, les événements ”a l'instant n, le
véhicule est en place A, B ou C”, et on note pour tout n € N,

an = P(An),bn = P(Bn),cn = P(Ch)
1. En posant X,, = | b, | € M31(R), montrer qu’il existe une matrice M € M3(R) telle que pour tout n € N, X;,11 = M X,,.
Cn

2. Justifier que les valeurs propres de M sont toutes réelles, puis établir que M admet trois valeurs propres distinctes telles
que—1<)\1<)\2<)\3:1.

3. Montrer qu’il existe un unique vecteur Uy € Ea(1) tel que la somme de ses composantes soit égale a 1.
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4. On considére alors une base de vecteurs propres B = (Up, U1, U2) associée aux valeurs propres 1, A1, A2 et on peut écrire
Xo = apUp + a1Us + a2Us dans cette base.
Montrer que pour tout n € N, X,, = aoUp + a1 A\TU1 + a2 A5Us, puis justifier que nécessairement ap = 1.

5. En déduire que les suites (ax), (bn) et (c,) sont convergentes et déterminer leur limite.

{Propriété 9 (formule de Bayes).]

Soit (2,.4, P) un espace probabilisé.
1. Si A et B désignent deux éveénements de probabilité non nulle, alors :

_ P(ANB) _ P(B)Ps(A)

Pa(B) P(A) P(A)

2. Plus généralement, si (A;);cr est un systéme complet d’événements avec pour tout ¢ € I, P(A;) > 0, alors pour tout
évenement B € A de probabilité non nulle,
Pa(ay - PANB) __ P(A)Pa(B)
P(B) Y ier P(Ai)Pa; (B)

» Il suffit de revenir a la définition de la probabilité conditionnelle. Pour le deuziéme point, on rappellera la formule des
probabilités totales afin de transformer le dénominateur.

Remarque Cette derniere formule est tres pratique : elle nous permet de calculer des probabilités a posteriori, en inversant
tout simplement le conditionnement.

Définition Soit (€2, .4, P) un espace probabilisé. On dit que deux événements A et B sont indépendants si :
P(ANB) = P(A)P(B)
Plus généralement, pour toute famille quelconque d’événements (4;):cr, on dit qu’ils sont :
e deux & deux indépendants si pour tout (i,5) € I%,i # j, P(A; N A;) = P(A;)P(A;).

e mutuellement indépendants si pour toute sous-famille finie (4;):cs, on a :

P(ﬂingi) = H P(AZ)

i€

Remarques

1. Si I'événement A est négligeable, alors, comme AN B C A, on a toujours P(AN B) = 0 = P(A)P(B), et ainsi un
évenement négligeable est toujours indépendant de tout évenement.

2. Il ne faut pas confondre I'incompatibilité, c’est & dire AN B = () et I'indépendance de deux éveénements... il existe
des événements incompatibles qui ne sont pas indépendants. On retiendra surtout qu’il s’agit d’abord d’une notion
probabiliste et on préferera toujours revenir & la définition pour justifier que des événements sont indépendants.

3. Par défaut, et sans aucune indication contraire, on pourra considérer que des éveénements donnés indépendants dans
un énoncé sont mutuellement indépendants. En particulier, cela entraine évidemment qu’ils sont deux a deux
indépendants mais la réciproque est fausse !

{Propriété 10 (indépendance et événements contraires).]

Soit (€2,.A, P) un espace probabilisé. Si de plus A et B sont indépendants, alors :

A et B sont indépendants
A et B sont indépendants
A et B sont indépendants

» Il suffit de revenir a la définition a l’aide du produit des probabilités.

Remarque En fait, si (A;)ier désigne une famille d’événements mutuellement indépendants, alors on peut facilement
généraliser la propriété précédente et en notant B; € {A;, A;}, les événements (B;)icr seront encore mutuellement indépendants.

www.cpgemp-troyes.fr 7


http://www.cpgemp-troyes.fr/

Chapitre 10
MP - Lycée Chrestien de Troyes Variables aléatoires discrétes

Exemple 8 On se place dans un espace probabilisé (2, .4, P) et on considére une suite d’éveéements (A,) € AN,
1. On suppose que la série > P(A,) converge. Montrer que :

+00 too
P( U4 =0

k=0 p=k

2. On suppose que la série > P(A,,) diverge et que les événements (A,) sont mutuellement indépendants. Montrer que :

400 +oo
P( U4y =1
k=0 p=k

On pourra étudier P(ﬂzf;",iAip) et utiliser I'inégalité de convexité 1 —z < e~ sur [0, 1].

Ces deux résultats sont classiques et ils sont appelés premier et second lemme de Borel-Cantells.

2 Variables aléatoires discreétes

2.1 Loi d’une variable aléatoire et premiers exemples fondamentaux

Définition Soient (€2,.4) un espace probabilisable et E un ensemble quelconque. On appelle variable aléatoire discréte toute
application X : Q — F telle que :

X(Q) = {zi, i € I'} est fini ou infini dénombrable
viel, X *({xz:}) e A

En particulier, si £ = R, on dit que X est une variable aléatoire discréte a valeurs réelles.

Notation Généralement, on adopte des notations probabilistes et on note :
o (X = x;) 'évenement X *({z;}) = {w € Q, X(w) = xi},
e (X € A) I'évenement X H(A) = {w e Q, X(w) € A}.

Ces variables aléatoires sont utiles et elles nous vont nous permettre de réinterpréter quantitativement des situations aléatoires
sur un nouvel espace probabilisé induit par X.

{Théor‘eme 11 (loi d’une variable aléatoire discréte).]

Soit (€2, .4, P) un espace probabilisé et considérons X une variable aléatoire discrete. Alors, I'application Px : P(X(Q2)) — R
définie par :
Px : Ar— P(X S A)

est une probabilité sur (X (92), P(X(Q2))) appelée loi de X.

» On revient a la définition d’une mesure de probabilité et on utilise les propriétés de l'image réciproque.

{Corollaire 12 (probabilité d’un événement sur P(X(Q)))]

Soit (2,.4, P) un espace probabilisé et considérons X une variable aléatoire discrete telle que :
X(Q) =A{zi, 1€ 1}
Alors, ((X = w))icr désigne un systéme complet d’événements sur et pour tout A € P(X(Q2)), et en notant I = {i €
Ia T € A}?
Px(A)=P(X=A)= > P(X =uz)

i€ly

Remarque Concrétement, connaitre la loi d’une variable aléatoire discréte, c’est donc étre capable d’identifier les valeurs
prises par X et de préciser le poids des éveénements élémentaires p; = P(X = x;) tels que :

Viel, pi>0et Zpizl

iel

Et encore une fois, quand I sera infini dénombrable, cela reviendra & étudier la convergence d’une série a termes positifs.
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Définition Soit (£2,.A, P) un espace probabilisé. On dit alors que deux variables aléatoires discrétes X et Y suivent la méme
loi si X(Q2) = Y (Q2) et pour tout événement élémentaire {w;} C X(Q) =Y (Q),

P(X:wi) :P(Y:wi)

Dans ce cas, on note de fagon abusive X ~ Y.

Remarques

1. Attention, cela ne signifie en aucun cas que X =Y, car méme si elles se comportent de la méme fagon, elles peuvent
représenter des situations probabilistes complétement différentes !

2. Dans de nombreux exercices, on nous demandera de justifier que X suit une loi donnée et ainsi, on sera parfois amené a
reconnaitre une situation courante, et pour laquelle X suit une loi de référence. Il est donc trés important de maitriser
quelques modeles probabilistes de référence.

Définition Soit n € N*. On dit qu’une variable aléatoire X suit une loi uniforme sur [1,n] si :

X(Q) =[1,n]
Vke[l,n], P(X:k:):%

Dans ce cas, on note X ~ U([[1,n]).

Remarque Pour cette variable aléatoire, tous les événements élémentaires ont donc la méme chance de se réaliser : il s’agit
en fait de la probabilité uniforme.

Définition Soit p €]0,1[. On dit qu’'une variable aléatoire X suit une loi de Bernoulli de parametre p si :

X(Q):{Ovl}
P(X=1)=p,P(X=0)=gq, avecq=1—p

Dans ce cas, on note X ~ B(p).

Remarque Plus généralement, les évenements (X = 1) et (X = 0) traduisent une épreuve de Bernoulli & deux issues :
ils seront appelés succes et échec. Ainsi, on utilisera ce modele lorsque X rendra compte du succes ou non d’une expérience
aléatoire.

Définition Soit p €]0,1[. On dit qu’une variable aléatoire X suit une loi binomiale de parameétres n,p si :

X(Q) =1[0,n]
Vke[0n], P(X=F)= (Z)pkq"_k, avecq=1—p

Dans ce cas, on note X ~ B(n,p).

Remarque On rappelle qu’une telle variable aléatoire est associée a une situation tres classique dans laquelle X représente
le nombre de succes lorsqu’on répete de fagon indépendante une épreuve de Bernoulli : on utilisera donc ce modele lorsque
X rendra compte du nombre de succés obtenus apreés n répétitions indépendantes d’une épreuve de la forme succes/échec.

Définition Soit p €]0,1[. On dit qu'une variable aléatoire X suit une loi géométrique de parametre p si :

X(Q) =N~
VEeN', P(X=k)=¢"p, avecqg=1—1p

Dans ce cas, on note X ~ G(p).

Remarque Si on considére encore une suite d’épreuves de Bernoulli indépendantes, alors en notant X le rang du premier
succes et en posant A ="la k-éme épreuve est un succeés”’, on a par indépendance :

k—1
P(X=k)=P(AiN..nA4 1NnA) =[] PA)PAL) =¢""p
=1

Autrement dit, on fera appel au modele géométrique quand la variable aléatoire X rendra compte du temps d’attente associé
& un premier succes lorsqu’on répete de fagon indépendante une épreuve de la forme succes/échec.
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{Théoréme 13 (caractérisation d’une loi géométrique).]

Soit (£2,.4, P) un espace probabilisé.

1. On considére X une variable aléatoire discréte sur €2 telle que X ~ G(p),p €]0, 1].
Alors, pour tout k € N, P(X > k) = ¢* et ainsi,

V (k,£) € N?, Pixsiy(X >k+0) =P(X >0 (%)
On dit que X est une loi sans mémoire.

2. Réciproquement, considérons Y telle que Y (2) = N*. Si de plus Y vérifie la condition (%), alors Y suit une loi
géométrique de parametre p = P(Y = 1).

» Pour le premier point, il suffit de décrire ’événement (X > k) comme réunion d’événements élémentaires, la formule
déécoule alors de la définition de la probabilité conditionnelle. Pour le second point, on cherche d’abord a obtenir une relation
de récurrence qui nous permettra d’obtenir P(Y = k).

Remarque En fait, si on voit X comme une durée de vie, on dit que X est sans mémoire car la probabilité de sa durée
de vie ne dépend pas du temps déja passé... cela nous donne alors une autre fagon d’utiliser la loi géométrique, pour des
situations dans lesquelles la réalisation d’un succes ne dépend pas des expériences précédentes.

Définition Soit A > 0. On dit qu'une variable aléatoire X suit une loi de Poisson de parametre A si :
X(Q)=N

k
VEkeN, P(X:k:):e*i

Dans ce cas, on note X ~ P()\).

Remarque Il s’agit encore une fois d’une variable aléatoire qui rend compte d’un nombre de succes... mais contrairement
aux autres modeles, il n’est pas simple d’interpréter les situations associées a une loi de Poisson car c’est une loi limite.

{Théoréme 14 (approximation d’une loi de Poisson par une loi binomiale).]

Soit (£2, .4, P) un espace probabilisé, et considérons (X,,) une suite de variables aléatoires telles que X, suit une loi binomiale
de parametres n, p, vérifiant :
npn, ~ A>0

n——+oo

k

A
Alors, pour tout k € N, limp 400 P(Xn =k) = ef)‘ﬁ, et ainsi la suite (X,) converge en loi vers une loi de Poisson.

» On revient a la loi binomiale et on travaille sur le coefficient binomial afin de déterminer la limite a l’aide des fonctions
usuelles.
Remarque Par hypotheése, on a :

A

nPp ~ A pp~— —0

n
Ainsi, si X,, désigne le nombre de succes d'un événement rare lors d’un grand nombre de répétitions d’une épreuve de
Bernoulli, alors X,, peut étre approchée par une loi de Poisson de parametre A... C’est pour cela que la loi de Poisson

est aussi appelée loi des événements rares et elle rendra compte du nombre de succeés dans des épreuves de la forme
succes/échec et ceci quand celui-ci a une faible probabilité de se réaliser.

2.2 Famille de variables aléatoires indépendantes

Définition Soit (£2, .4, P) un espace probabilisé et considérons X,Y deux variables aléatoires discrétes telles que :
XQ)=Azi, i€l et Y(Q) ={y;, j€J}
On appelle loi du couple (X,Y) la probabilité Px y définie sur P(X(Q2)) x P(Y(Q2)) par :

Px,y i (wi,y;) = P (X =2:) N (Y = y5))

Dans ce cas, les lois Px et Py associées aux variables aléatoires X et Y désignent les lois marginales.
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{Propriété 15 (relation avec les lois marginales).]

Soit (€2,.A, P) un espace probabilisé et considérons X,Y deux variables aléatoires discrétes telles que :
X(Q)=Azi, i€l et Y(Q) ={y;, j€J}
Alors, on a :
L. pour tout i € I, P(X = z:) = 3, ; Px,v (%:,y;)

2. pour tout j € J, P(Y =y;) = >_,c; Px.v(2i,v5)

» C’est immédiat et découle de la formule des probabilités totales. En effet, si (X = x;) désigne un événement de P(X(Q)),
alors les événements (Y = y;)jecs représentent un systéme complet d’événements.
Remarques

1. On pourra retenir que la connaissance de la loi d’un couple de variables nous permet d’en déduire les lois marginales.
Par contre, les lois marginales ne nous permettront pas, en général, d’obtenir la loi du couple.

2. Tres souvent, I'une des variables sera conditionnée par ’autre et ainsi, on peut par exemple écrire pour tout ¢ € I,

P(X =z:) =) Pxy(w,y)=> P((X=2)n(Y =y;)) =D P(Y =y;)Pry=y(X = )
jeJ jeJ jeJ

Et cette derniere égalité fait apparaitre une loi conditionnelle : c’est la loi de X sachant que (Y = y;).
Exemple 9 On considére une suite d’épreuves de Bernoulli indépendantes et de parameétre p €]0,1[. On note X le rang du
premier succes et Y le rang du second succes.

1. Déterminer la loi du couple (X,Y).

2. En déduire les lois de X et Y.

Définition Soit (2,4, P) un espace probabilisé et considérons X, ..., X, des variables aléatoires discretes telles que X (Q) =
{zi,, ix € Ix}. On dit encore que :

e les variables aléatoires sont deux & deux indépendantes si pour tout (k,¢) € I X I,
P (X = zi,,) N (Xo = zi,)) = P(Xi = 23, ) P(Xo = 23,)
e les variables aléatoires sont mutuellement indépendantes si pour tout J C [1,n] :

P (Mies (X = i) = [ [ P(Xk = 23,

kedJ

Remarque Par défaut, et sans aucune indication contraire, on pourra considérer que des variables aléatoires données
indépendantes dans un énoncé sont mutuellement indépendantes. En particulier, cela entraine évidemment qu’elles sont
deux & deux indépendants mais la réciproque est fausse !

{Corollaire 16 (loi d’un couple de variables indépendantes).]

Soit (£2,.A, P) un espace probabilisé et considérons X,Y deux variables aléatoires discretes telles que :
X(Q) = {zi, i € I} ot Y(Q) = {y;, j € J}

Si de plus, X et Y sont supposées indépendantes, alors on a pour tout (i,7) € I x J, Px,y(z:,y;) = P(X = z;)P(Y = y;).
Autrement dit, la loi du couple est ici définie par les lois marginales.

{Théoréme 17 (caractérisation de deux variables aléatoires indépendantes).]

Soient (£2,.4, P) un espace probabilisé, X,Y deux variables aléatoires discretes. Alors :

X et Y sont indépendantes < V (A, B) € P(X(Q)) x PY (), P(X € A)n(Y € B))=P(X € A)P(Y € B)

» La réciproque est immédiate. Pour le sens direct, il suffit de définir les événements (X € A) = {x;, i € Ia} et (Y € B) =
{yj, 7 € Jr} avant de calculer la probabilité de lintersection.
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On pourra généraliser cette derniere propriété et ainsi, la probabilité de 'intersection d’évéenements associés a un nombre fini de
variables aléatoires mutuellement indépendantes sera toujours donnée par le produit des probabilités.

Exemple 10 Soient N € N* et p €]0,1[. On pose ¢ =1 — p.
On considére N variables aléatoires indépendantes X1, X, ..., Xy définies sur un méme espace probabilisé (2, A, P) mutuellement
indépendantes et de méme loi géométrique de parametre p.

1. Soit ¢ € [1, N] et fixons n € N*. Déterminer P(X; > n).
2. On considere la variable aléatoire Y = min(X1, Xo,..., Xn).

(a) Soit n € N*. Calculer P(Y > n). En déduire P(Y < n), puis P(Y =n).

(b) Préciser alors la loi de Y.

{Propriété 18 (transfert d’indépendance).}

Soient (£2,.4, P) un espace probabilisé et X,Y deux variables aléatoires discrétes indépendantes. On consideére de plus f et
g deux applications telles que :
f:X(Q)—Retg:Y(Q) —R

alors f(X) et g(Y') sont encore indépendantes.

» On se raméne simplement au théoréme précédent avec (A, B) C P(R)?.

Remarque Ce résultat est tres pratique et encore une fois, il peut se généraliser. Autrement dit, quand on travaille avec
des variables aléatoires mutuellement indépendantes, on pourra retenir qu’on conserve 'indépendance par composition sur
ces variables :

{Corollaire 19 (lemme des coalitions).}

Soit (€2, A, P) un espace probabilisé et considérons X1, ..., X, des variables aléatoires discrétes qu’on suppose mutuellement
indépendantes, p € [1,n — 1]. Si de plus f, g désignent deux applications telles que :

F:Xi(Q)x...xXp(Q) —m Ret g: Xp+1(2) X ... Xn(Q) — R

alors f(X1,...,X5) et g(Xp41,...,Xn) sont encore indépendantes.

2.3 Espérance d’une variable alétoire discréete réelle ou complexe

Définition Soient (£2,.4, P) un espace probabilisé et X une variable aléatoire discrete telle que X (Q) = {x;, i € I'}.
Sous réserve d’existence, on appelle espérance mathématique le nombre réel défini par :

E(X) = Zpil’i, avec p; = P(X = x;)

i€l

Remarques

1. On peut alors observer que :

Z- 1 Pi%q
E(X) =) piwi= 35—
; Zie[ pi

Ainsi, Despérance mathématique désigne la moyenne des valeurs prises par X pondérée par les probabilités des
évenements élémentaires.

2. Dans le cas particulier ou X prend un nombre fini de valeurs, la somme donnée est finie et on pourra toujours calculer
lespérance associée. Dans les autres cas, il s’agira d’abord de vérifier que la série D p;x; est convergente, ou plus souvent
absolument convergente : on pourra méme noter X € L' pour signifier que cette série est absolument convergente.

Exemple 11 Les questions suivantes ne sont pas forcément liées.

1. Déterminer 'espérance de X dans les cas suivants :

(8) X ~U([L,7])
(b) X ~ B(p) avec p €]0,1]
(¢) X ~ B(n,p) avec p €]0, 1]
(d) X ~ G(p) avec p €]0, 1]
(e) X ~P(N) avec A >0
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2. M. Toutlemonde habite dans un immeuble dont la porte d’entrée est sécurisée par un code a 4 chiffres dont chacun est
compris entre 0 et 9. Malheureusement, il se trouve devant cette porte et il en a oublié le code.

(a) En essayant un code au hasard, quelle est la probabilité de tomber sur le bon code ?

(b) M. Toutlemonde décide de trouver le bon code en procédant de la maniere suivante : il essaye un code au hasard choisi
par les codes non encore testés. On note X la variable aléatoire égale au nombre de codes testés jusqu’a obtenir le bon
code. Déterminer la loi de X et donner son espérance.

(c) A la place de la stratégie précédente, M. Toutlemonde essaye des codes au hasard, sans se soucier du fait qu’il les ait
déja essayés ou non. On note encore X la variable aléatoire égale au nombre de codes testés jusqu’a obtenir le bon
code. Déterminer la loi de X et donner son espérance.

{Théor‘eme 20 (de transfert).]

Soient (92,.A, P) un espace probabilisé, X une variable aléatoire discréte et on considere f : X(Q) — K telle que
> icr Ipif(xi)| converge. Alors, on a :

E(f(X)) =Y _pif(w:), avec p; = P(X = z:)

i€l

» Pour simplifier les écritures, on pose Y = f(X) et en notant I, = {i € I, f(x:) = yr}, on peut réécrire la somme de
droite par paquets a l’aide du théoréme de sommation par paquets.

{Propriété 21 (de l’espérance).]

Soient (£2,.4, P) un espace probabilisé et X,Y deux variables aléatoires discretes telles que :
XQ)={zi,i€l} et Y(Q)={y;, j€J}
On suppose de plus que X,Y € L'. Alors, X et Y admettent une espérance finie et on vérifie que :

1. Pespérance est linéaire :

VY (a,b) € R?, E(aX +bY) = aE(X) +bE(Y)
Et en particulier, avec Y =1, on a E(aX +b) = aF(X) + .

2. Pespérance est positive, c’est & dire que pour des variables réelles : X > 0= E(X) > 0.
Et en particulier, pour une variable & valeurs positives, F(X) = 0 < X = 0 presque slirement.

3. lespérance est croissante, c’est a dire que pour des variables réelles :
X<Y=EX)<EY)

Et en particulier, on a 'inégalité : |E(X)| < E(|X|).

» Seul le premier point est délicat, on applique le théoréme de transfert aprés en avoir vérifié les hypotheses. Pour cela, on
pourra montrer la sommabilité des familles (pijx;) et (pijy;) a Uaide du théoréme de Fubini.

{Théor‘eme 22 (espérance du produit de variables mutuellement indépendantes).}

Soient (£2,.4, P) un espace probabilisé et X,Y deux variables aléatoires discretes telles que :
X(Q) ={z:, i} et Y(Q) ={y;, j € J}
On suppose de plus que X,Y € L' et qu’elles sont indépendantes. Alors, XY admet une espérance finie et on a :

E(XY) = E(X)E(Y)

» On revient encore au théoréme de transfert a condition d’en vérifier les hypothéses. Pour cela, on montre que la famille
(pijxiy;) est sommable a laide du théoréme de Fubini.

Remarque Par récurrence, et en faisant appel au lemme des coalitions, il est alors trés facile d’étendre ce dernier résultat
de sorte que pour toute famille de variables mutuellement indépendantes Xi,...,X, € L' :

E(Xi...X,) = ﬁ E(Xy)
k=1
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Exemple 12 On consideére une variable aléatoire discrete X a valeurs dans N. Montrer que :

X admet une espérance finie < Z P(X > n) converge
n>0

et que dans ce cas, E(X) =Y/ P(X >n) =31 P(X >n).

2.4 Variance d’une variable aléatoire réelle, écart type et covariance

Définition Soient (£2,.4, P) un espace probabilisé et X une variable aléatoire discrete telle que X (Q) = {x;, i € I'}.
Sous réserve d’existence, on appelle alors :

e variance le nombre réel défini par :

V(X) = E(X - B(X))?*) = Xie pilzi — B(X))?, avec pi = P(X = ;)

e écart-type le nombre réel positif o tel que : o(X) = /V(X).

Remarques

1. On peut alors observer que :

Yies Pilzi — B(X))?
X) = pi(zi — B(X))* = =€
Z Ziel Di
Ainsi, la variance n’est rien d’autre que la moyenne des écarts au carré par rapport a ’espérance et pondérée par les

probabilités des éveénements élémentaires. On pourra donc retenir que la variance et ’écart-type sont des indicateurs
de la dispersion des valeurs prises par X autour de sa moyenne.

i€l

2. Dans le cas particulier ou X prend un nombre fini de valeurs, la somme donnée est finie et on pourra toujours calculer la
variance associée. Dans les autres cas, il s’agira d’abord de vérifier que la série 3" p;x? est convergente, ou plus souvent
absolument convergente : on pourra méme noter X € L? pour signifier que cette série est absolument convergente.

Propriété 23 (condition suffisante d’existence).]

Soient (£2,.A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L?. Alors, X admet une espérance
finie et une variance finie.

» Posons m = E(X), on procéde alors en deux temps et on montre a chaque fois que les séries associées sont bien absolument
convergentes par simple comparaison sur les termes généraut.

Corollaire 24 (formule d’Huygens pour le calcul de la variance).}

Soient (€2, A, P) un espace probabilisé et X une variable aléatoire discréte telle que X € L. Alors, la variance est aussi égale
a:
V(X) = B(X?) - (B(X))” = E(X(X - 1)) + E(X) - (E(X))?

Exemple 13 Déterminer la variance de X dans les cas suivants :
1. X ~U([1,n])
2. X ~ B(p) avec p €]0, 1]

3. X ~ B(n,p) avec p €]0, 1]

~
><i

G(p) avec p €]0, 1]

o
><

P(N) avec A > 0

{Propriété 25 (de la variance).]

Soient (€2, A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L2, Alors, on a :

(i) V(X) > 0. En particulier, V(X) = 0 < X est constante presque stirement.

(i) V (a,b) € R?, V(aX +b) = a*V(X) +0
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» [l suffit de revenir a la définition de la variance et d’utiliser les propriétés de l’espérance mathématique.(

Définition Soient (€2, .4, P) un espace probabilisé et X une variable aléatoire discréte. On dit que :

e la variable aléatoire X est centrée si E(X) = 0.

e la variable aléatoire X est réduite si V(X) = 1.

{Théoréme 26 (construction d’une variable centrée et réduite).]

Soient (£2,.A, P) un espace probabilisé discret et X une variable aléatoire discrete telle que X € L?. On pose m = E(X) et

est centrée et réduite.

X _
o = o(X) qu’on suppose non nul. Alors, la variable aléatoire définie par

» Le résultat découle directement des propriétés de l’espérance et de la variance démontrées plus haut.

{Théoréme 27 (existence et définition de la covariance).]

Soit (€2, .A, P) un espace probabilisé et considérons X,Y deux variables aléatoires discrétes telles que X,Y € L2, Alors, XY
admet une espérance finie et on peut définir le nombre suivant appelé covariance de X et Y :

Cov(X,Y)=E((X — E(X))(Y — E(Y)))

» Avec ces hypothéeses, on rappelle que X,Y € L* et on peut utiliser l'inégalité de Young pour magjorer le terme général de
la série Y |pijziy;].

{Propriété 28 (formule d’Huygens pour le calcul de la covariance).]

Soient (€2,.4, P) un espace probabilisé et X,Y deux variables aléatoires discretes telle que X,Y € L?. Alors, on peut aussi
écrire :

Cov(X,Y)=E(XY)—- E(X)E(Y)
De plus, on vérifie que :
1. la covariance est une forme bilinéaire symétrique et positive ;

2. et si de plus X et Y sont indépendantes, alors on a Cov(X,Y) = 0 et on dit que les variables sont non corrélées.

» Dans le premier point, il suffit de développer la formule de la covariance et d’utiliser les propriétés de l’espérance. Les
résultats suivants découlent immédiatement des propriétés de l’espérance.

Remarque On fera attention, il s’agit bien d’une condition nécessaire et il existe des couples de variables de covariance
nulle, sans pour autant qu’elles soient indépendantes.
Par exemple, il suffit de considérer X,Y deux variables aléatoires telles que X ~U([—1,1]) et Y =1si X =0, Y = 0 sinon.

{Propriété 29 (variance d’une somme de variables aléatoires).]

Soient (€2, A, P) un espace probabilisé et X, Y deux variables aléatoires discrétes telles que X,Y € L?. Alors :
(i) la variance n’est pas linéaire : ¥ a,b € R, V(aX + bY) = a®V(X) + b*V(Y) + 2abCov(X,Y)
(ii) En particulier, si X1,..., X, désignent des variables aléatoires discrétes telles que X; € L?, alors :
VX1i+...+Xn)=V(X1)+... + V(Xn) + 23 o j<n, Cov(Xs, Xj)
Si de plus, elles sont mutuellement indépendantes :

VXi+...+Xn)=V(X1) +...V(Xn)

» On revient a la formule d’Huygens pour le calcul de la variance, puis on utilise les propriétés de l’espérance. Pour le second
point, on peut procéder par récurrence sur n > 2.
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Exemple 14 Soient n € N* et p € [0,1]. On considére Xi,...,X, des variables aléatoires mutuellement indépendantes et
identiquement distribuées telles que pour tout i € [1,n], X; ~ B(p), et on définit :

Sn=X1+...+ X,
1. Montrer que S,, ~ B(n,p).
2. Retrouver alors ’espérance et la variance de S,.
3 Applications

3.1 Fonction génératrice d’une variable aléatoire

Définition Soit (€2, .4, P) un espace probabilisé et considérons X une variable aléatoire discréte qu’on suppose & valeurs dans N.
Le terme général étant borné pour ¢t = 1, la série entiere Y P(X = n)t" a un rayon de convergence R > 1, et on appelle alors
fonction génératrice de X la fonction Gx définie sur | — R, R][ par :

Gxuy:EaXyzifP@X:
k=0

{Propriété 30 (convergence de la série génératrice associée et conséquences).]

Soit (€2,.A, P) un espace probabilisé et considérons X une variable aléatoire discréte qu’on suppose & valeurs dans N.
Alors, la série entiere > P(X = n)t" converge normalement sur [—1, 1], et ainsi :

1. Gx est au moins définie et continue sur [—1,1] et donc, pour tout t € [~1,1], Gx (t) = 37 P(X = k)t*.

2. Gx est de classe C°° sur | — 1, 1] et pour tout ¢t € | — 1, 1], et pour tout n € N*,

G (t) }:P Ve(k —1)...(k—n+ 1)tk

k=n

» On travaille sur la norme infinie du terme général. Le reste découle directement des théorémes sur les séries entieres.

Remarque En fait, en tant que somme d’une série entiére, on peut méme étendre la régularité de Gx sur l'intervalle | — R, R].
C’est notamment le cas des variables aléatoires finies pour lesquelles Gx est définie sur R tout entier : on a la des fonctions
polynomiales.

{Corollaire 31 (la fonction génératrice détermine la loi de X)]

Soient (£2,.4, P) un espace probabilisé, X une variable aléatoire discréte qu’on suppose a valeurs dans N, et notons Gx sa
fonction génératrice.
Alors, la fonction génératrice détermine la loi de X, c’est & dire que pour tout n € N,

P(in):%)!(o)

On en déduit que deux variables aléatoires a valeurs dans N ont la méme loi si et seulement si elles ont la méme fonction
génératrice.

» Cela provient directement de 'unicité des coefficients dans le développement en série entiere. La loi étant entiérement
déterminée par Gx, on en déduit le second point.

Il faudra donc étre capable d’identifier ou de retrouver rapidement les fonctions génératrices associées a nos lois usuelles.
Exemple 15 Déterminer la fonction génératrice Gx dans les cas suivants :

1. X ~U([1,n])

2. X ~ B(p) avec p €]0, 1]

3. X ~ B(n,p) avec p €]0, 1]

~
><

G(p) avec p €]0,1]

&
i><:

P(A) avec A >0
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{Propriété 32 (fonction génératrice de la somme de variables mutuellement indépendantes).}

Soient (2, A, P) un espace probabilisé, X1,...,X, des variables aléatoires discrétes & valeurs dans N, et notons Gx, leur
fonction génératrice. On suppose de plus que ces variables aléatoires sont mutuellement indépendantes et ainsi,

Vie [717 1]7 Gx 4. +X, (t) = H GXk (t)
k=1

» On revient simplement a la définition de la fonction génératrice et on rappellera les propriétés de [’espérance.

{Théor‘eme 33 (caractérisation de la dérivabilité en 1 pour la somme d’une série entiere de rayon R > 1)]

Soit (an) une suite réelle & valeurs positives telle que > a, converge. On considére > a,t" la série entiere associée de rayon
de convergence R > 1, et on note f sa somme sur | — R, R].
Alors, f est dérivable en 1 si et seulement si la série Y na, converge, et dans ce cas, si celle-ci est dérivable en 1 :

+oo
F'(1) =" nan
n=1

» On procéde par disjonction des cas : si R > 1, alors les résultats sur les séries entiéres nous donnent directement les deux
assertions et l’égalité. Si par contre R = 1, on montre d’abord que t — %{(1) est croissante sur [0, 1] avant de justifier
l’équivalence des deux assertions.

{Corollaire 34 (calcul de l’espérance).}

Soient (£2,.4, P) un espace probabilisé, X une variable aléatoire discréte qu’on suppose a valeurs dans N, et notons Gx sa
fonction génératrice.
Alors, X € L si et seulement si Gx est dérivable en 1 et dans ce cas, on en déduit que :

E(X)=Gx(1)

» Cela est immédiat : il suffit d’exploiter le théoréme précédent avec la série génératrice associée a X.

{Corollaire 35 (calcul de la variance).]

Soient (£2,.4, P) un espace probabilisé, X une variable aléatoire discréte qu’on suppose a valeurs dans N, et notons Gx sa
fonction génératrice.
Alors, X € L? si et seulement si Gx est deux fois dérivable en 1 et dans ce cas, on en déduit que :

E(X(X —1)) = G%(1) et ainsi, V(X) = E(X(X — 1)) + E(X) — (E(X))*> = G%(1) + Gx (1) — (G'x(1))*

» On procéde par double implication, et on veillera a exploiter le méme théoréme en considérant la série génératrice dérivée.
Exemple 16 Les questions suivantes sont indépendantes.

1. On considére X, Y deux variables aléatoires discretes telles que :
X ~ G(p) avec p €]0,1[, et Y ~ P(X) avec A > 0

t
(a) Montrer que pour tout t € [—1,1], Gx (¢t) = ] & - et Gy (t) = X1,
—q

(b) Retrouver alors ’espérance et la variance pour chacune de ces variables.

2. On suppose que X1, ..., X, désignent des variables aléatoires mutuellement indépendantes et telles que pour tout k € [1,n],
X ~ P(Ak) avec A\, >0

Etablir que X3 +. ..+ X, suit encore une loi de Poisson dont on précisera le parametre. On pourra proposer deux méthodes.
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3.2 Inégalités probabilistes et loi faible des grands nombres

{Propriété 36 (inégalité de Markov).]

Soient (€2, A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L'. Alors, on a :

ve>0, PUX| > ¢ < ZUXD
€

» On note J = {i € I, |x;| > €} et il suffit alors de minorer lespérance de |X]|.

{Propriété 37 (inégalité de Bienaymé—TchebycheV).]

Soient (2,.A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L? converge. Alors, on a :

V(X)

Ve>0, P(X — E(X)| > ¢) <
€

» On applique linégalité de Markov d la variable (X — E(X))? avec >

Exemple 17 Soit f une fonction réelle continue sur [0, 1]. Pour n € N*, on note P, le polynéme défini par :

= kofn\ g n—k
@) =3 15 <k>m (1)
k=0
On fixe z € ]0,1[. On considére une suite de variables aléatoires (X, ) mutuellement indépendantes et de méme loi de Bernoulli
de parametre x, et on pose Sp = > ,_; Xk.
1. Donner une expression de E(f(%’))

2. Pour tout a > 0, on définit §(a) = sup{|f(z) — f(y)|, =,y € [0,1], |z — y| < a}. Démontrer que :

2||f]]oo
n () — §(a) + =
zﬁffﬁ] |[Pa(2) = f(2)] < 8(a) + =5

3. En déduire que la suite (P,) converge uniformément vers f sur [0, 1].

On retrouve la une preuve probabiliste du théoréme de Stone- Weierstrass.

{Théoréme 38 (loi faible des grands nombres).]

Soient (2,4, P) un espace probabilisé discret et X1,..., X, des variables aléatoires discrétes mutuellement indépendantes et
identiquement distribuées. On suppose de plus qu’elles posseédent une espérance finie et une variance finie notées m = E(X;)
et v= V(Xl)

De plus, si on note S, = X1 + ...+ X,, alors pour tout € > 0,

On dit aussi que 5;;‘ converge en probabilité vers m.

Sn

n

» C’est immédiat : il suffit d’appliquer ’inégalité de Bienaymé-Tchebychev a

avant de passer a la limite...

Remarque Ce résultat a en fait beaucoup de sens, car il permet de justifier la premiére approche fréquentiste qu'on a
pu vous donner du calcul de la probabiblité d’'un événement.

En effet, si on étudie I'apparition d’un caractére dans une population de n individus, on peut modéliser cette situation
par un échantillon (X1,...,Xy), ot pour tout ¢ € [1,n], X; ~ B(p).

n s s o . N 7 7 N
Dans ce cas, f, = — représente la fréquence d’apparition du caractére donné et on montre par ce théoréeme que :
n

P(fn—plz2€) — 0

n——+oo

Autrement dit, quand on augmente la taille de I’échantillon, celle-ci ne s’écarte pas trop de la probabilité p associée. Et ainsi,
la fréquence statistique nous donne une bonne approximation de la probabilité qu’un événement se réalise.
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