
Matrices d’une famille de vecteurs ou d’une application linéaire

Chapitre 1

Après avoir retravaillé quelques notions fondamentales d’algèbre linéaire, on revient
sur les matrices et leur utilisation en algèbre, que ce soit pour étudier une famille
de vecteurs ou une application linéaire. Leurs propriétés sont très nombreuses, et
celles-ci nous permettront de mieux comprendre tout l’intérêt de la réduction des
endomorphismes en dimension finie.
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3 Déterminant d’une matrice carrée 9
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Programmes 2022

Pour aller plus loin
Ces premiers chapitres de révisions d’algèbre linéaire sont importants car ils nous préparent tout doucement aux chapitres
fondamentaux de spé : celui sur la réduction des endomorphismes et celui sur les endormorphismes remarquables d’un
espace euclidien. D’ailleurs, ces notions recouvrent presque tous les sujets de concours en algèbre... On essaiera donc de
bien comprendre l’objectif sous-jacent : à partir d’une décomposition de l’espace bien choisie, on peut obtenir des tableaux
numériques plus faciles à manipuler, et ainsi rendre plus facile la résolution de certains problèmes algébriques.
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Révisions d’algèbre linéaire

1 Matrices d’une famille de vecteurs ou d’une application linéaire

1.1 Rappel des premières définitions

Définition Soient n, p deux entiers ≥ 1. On appelle matrice à n lignes et p colonnes toute représentation de la forme :

M =



m11 · · · m1j · · · m1p

... · · ·
... · · ·

...
mi1 · · · mij · · · mip

... · · ·
... · · ·

...
mn1 · · · mnj · · · mnp


où pour tout (i, j) ∈ J1, nK× J1, pK, mij désigne le coefficient de la matrice d’indice (i, j).

On note encore Mnp(K) l’ensemble des matrices à n lignes et p colonnes à coefficients dans K, ou plus simplement Mn(K)
l’ensemble des matrices à n lignes et n colonnes.

D’ailleurs, on rappelle que pour toutes matrices A = (aij), B = (bij) ∈ Mn(K), et pour tout λ ∈ K, on peut définir les
opérations suivantes : 

A+B = (aij + bij)

λ.A = (λ.aij)

A×B = (cij) où pour tout (i, j) ∈ J1, nK2, cij =
∑n
k=1 aikbkj

Soit n ∈ N∗. Alors, muni de ces opérations, on peut montrer que (Mn(K),+,×, .) constitue une K-algèbre non commu-
tative, c’est à dire que :

• (Mn(K),+,×) est un anneau non commutatif

• (Mn(K),+, .) est un espace vectoriel de dimension n2 et dont on donne ici la base canonique :

E11 =

1 0 · · · 0
0 0 · · · 0
... 0 · · · 0

 , E12 =

0 1 · · · 0
0 0 · · · 0
... 0 · · · 0

 , . . . , Enn =

0 0 · · · 0
0 0 · · · 0
... 0 · · · 1



Propriété 1 (structure d’espace vectoriel).

Remarques

1. Cette structure algébrique est commode car elle nous permet d’opérer facilement sur les matrices, par contre on ne
négligera pas ses limites : elle est non commutative et on peut montrer qu’elle n’est pas intègre...

2. On fera aussi très attention avec les formules usuelles. On pourra en effet appliquer les formules du binôme de Newton
et de factorisation, à condition que les matrices en jeu commutent.
Autrement dit, si AB = BA, alors on a pour tout n ∈ N∗,

(A+B)n =

n∑
k=0

(nk )AkBn−k et An −Bn = (A−B)

n−1∑
k=0

AkBn−1−k

3. Les matrices peuvent aussi être définies par blocs de la forme M =

(
A B
C D

)
, mais dans ce cas, on restera vigilant car

les opérations sur les matrices par blocs seront licites dès lors que les tailles des blocs considérés seront compatibles.

Soient (Eij) les matrices élémentaires de Mn(K) et A ∈Mn(K). Alors :

Eij × Ekl = δjkEil, où le symbole de Kronecker vérifie : δjk =

{
1, si j = k

0, sinon

Propriété 2 (produit et matrices élémentaires).

I Il suffit d’écrire le produit matriciel en respectant le produit ligne-colonne...
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Exemple 1 On note C = {A ∈Mn(K)| ∀M ∈Mn(K), AM = MA} le centre de l’algèbre Mn(K).
Soit A ∈Mn(K).

1. Montrer que A ∈ C ⇐⇒ ∀(i, j) ∈ J1, nK2, AEij = EijA.

2. En déduire que C est l’ensemble des matrices scalaires de la forme : λIn, λ ∈ K.

Remarque Les matrices nous donnent ici une nouvelle structure algébrique, mais elles seront vraiment utiles en algèbre
linéaire. En effet, ces tableaux et les opérations sous-jacentes nous donneront un moyen de modéliser rapidement tous nos
problèmes sur les espaces vectoriels.

Définition Soit E un K-espace vectoriel de dimension finie n ≥ 1 dont on note B = (e1, . . . , en) une base de E.
Si on considère des vecteurs x1, . . . , xp ∈ E, alors tous ces vecteurs se décomposent de façon unique de sorte que pour tout
j ∈ J1, pK :

xj = x1je1 + . . .+ xnjen =

n∑
i=1

xijei

On construit ainsi la matrice :

MatB(x1, . . . , xp) =



x11 · · · x1j · · · x1p
... · · ·

... · · ·
...

xi1 · · · xij · · · xip
... · · ·

... · · ·
...

xn1 · · · xnj · · · xnp


On dit qu’il s’agit de la matrice des vecteurs (xj) suivant la base B et on notera X1, . . . , Xp les vecteurs-colonnes deMn1(K)
constitués des composantes des vecteurs x1, . . . , xp dans la base B.

Soit E un K-espace vectoriel de dimension finie n ≥ 1 dont on note B = (e1, . . . , en) une base de E.
L’application φB : (x1, . . . , xp) ∈ Ep 7−→MatB(xj) ∈Mnp(K) désigne un isomorphisme d’espaces vectoriels.

Propriété 3 (isomorphisme canonique).

I C’est immédiat : comme dim(Ep) = np = dim(Mnp(K)), on se ramène à la caractérisation d’un isomorphisme en dimen-
sion finie.

Remarque Cet isomorphisme nous permettra ainsi de voir n’importe quelle matrice comme la matrice d’une famille de
vecteurs dans une base donnée.

Définition Soient E,F deux K-espace vectoriel de dimensions finies et on note B = (e1, . . . , ep) une base de E, B′ = (f1, . . . , fn)
une base de F . Si f ∈ L(E,F ), alors on appelle matrice de f suivant les bases B et B′ la matrice à n lignes et p colonnes
constituée des composantes des vecteurs f(ej) dans la base B′ :

MatBB′(f) =



m11 · · · m1j · · · m1p

... · · ·
... · · ·

...
mi1 · · · mij · · · mip

... · · ·
... · · ·

...
mn1 · · · mnj · · · mnp


avec pour tout j ∈ J1, pK, f(ej) =

∑n
i=1mijfi.

Remarque Dans le cas particulier où f = idE , alors on note MatB(idE) la matrice associée et on a :

MatB(idE) = diag(1, . . . , 1) notée Ip

Soient E,F deux K-espace vectoriel de dimensions finies. On note B = (e1, . . . , ep) une base de E, B′ = (f1, . . . , fn) une
base de F .
L’application φBB′ : f ∈ L(E,F ) 7−→MatBB′(f) ∈Mnp(K) désigne un isomorphisme d’espaces vectoriels.

Propriété 4 (isomorphisme canonique).

I C’est immédiat : comme dim(Ep) = np = dim(Mnp(K)), on se ramène à la caractérisation d’un isomorphisme en dimen-
sion finie.
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Remarques

1. Cet isomorphisme nous permettra ainsi de voir n’importe quelle matrice comme la matrice d’une application linéaire
dans des bases données. On parlera généralement de l’application linéaire canoniquement associée.

2. En particulier, cet isomorphisme nous donne l’équivalence suivante : MatBB′(f) = MatBB′(g)⇔ f = g.

Soient E,F deux K-espace vectoriel de dimensions finies. On note B = (e1, . . . , ep) une base de E, B′ = (f1, . . . , fn) une
base de F .
Si f ∈ L(E,F ), alors en notant M = MatBB′(f), on a :

y = f(x)⇔ Y = MX , avec X,Y les vecteurs-colonnes de Mn1(K) constitués des composantes de x ∈ E et y ∈ F .

Théorème 5 (interprétation algébrique du produit par un vecteur colonne).

I On exprime simplement f(x) dans les bases données et on fera attention au choix des indices de lignes et colonnes.

Remarque Ce résultat est fondamental : il nous permet alors d’interpréter ces opérations matricielles comme des opérations
sur les applications canoniquement associées et ainsi, on obtient le corollaire suivant :

Soient E,F,G des K-espaces vectoriels de dimensions finies dont on note B,B′ et B′′ des bases de E,F et G.

1. Si f ∈ L(E,F ) et g ∈ L(F,G), alors MatB′B′′(g)×MatBB′(f) = MatBB′′(g ◦ f).

2. De la même façon, si f ∈ L(E), alors pour tout k ∈ N∗, [MatB(f)]k = MatB(fk).

Corollaire 6 (interprétation algébrique du produit de deux matrices).

1.2 Matrices inversibles et groupe linéaire d’ordre n

Définition Soit A ∈Mn(K). On dit que A est inversible s’il existe B ∈Mn(K) telle que :

AB = BA = In

La matrice B est alors appelée l’inverse de A et elle sera notée A−1.

Soient M ∈ Mn(K), E un K-espace vectoriel de dimension finie et dont on note B une base. Si f désigne l’endomorphisme
de E canoniquement associé à M , alors :

M est inversible ⇔ f ∈ GL(E)

Et dans ce cas, M−1 = (MatB(f))−1 = MatB(f−1).

Propriété 7 (première caractérisation).

I On procède par double implication ; pour la réciproque, on fera appel à l’isomorphisme canonique φBB.

Soit M ∈Mn(K). Alors, M est inversible si et seulement si l’une des assertions suivantes est vérifiée :

1. les vecteurs-colonnes constituent une base de Mn1(K), ou à identification près de Kn

2. M est inversible à gauche

3. M est inversible à droite

Corollaire 8 (autres caractérisations des matrices inversibles).

Remarque Pour inverser une matrice, il n’y a pas de méthode simple et on pourra toujours chercher à inverser le système
linéaire donné par l’équivalence suivante :

AX = B ⇔ X = A−1B

Bien entendu, on gardera en tête le cas particulier des matrices carrées d’ordre 2 : si ad − bc 6= 0, alors la matrice associée
est inversible et l’inverse est donnée par : (

a b
c d

)−1

=
1

ad− bc ·
(
d −b
−c a

)

www.cpgemp-troyes.fr 4/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 1

Révisions d’algèbre linéaire

Notons GLn(K) l’ensemble des matrices inversibles d’ordre n. Alors :

1. Si A,B ∈ GLn(K), alors AB ∈ GLn(K) et on a : (AB)−1 = B−1A−1.

2. (GLn(K),×) est un groupe appelé groupe linéaire d’ordre n.

Propriété 9 (groupe linéaire d’ordre n).

I Le premier point est immédiat puisqu’on vérifiera l’inverse donné; pour le second, on reviendra à la définition d’un groupe
multiplicatif.

Exemple 2 Soient A,B ∈Mn(R) pour lesquelles on suppose qu’il existe P ∈ R[X] de degré ≥ 1 vérifiant :

P (0) = 1 et AB = P (A)

Montrer que A ∈ GLn(R) et que A et B commutent.

1.3 Trace et transposée d’une matrice

Définition Soit M ∈ Mn(K) une matrice carrée dont on note (mij) les coefficients. On appelle trace de M le scalaire noté
tr(M) défini par :

tr(M) =
∑n
i=1mii

1. L’application tr : M ∈Mn(K) 7−→ tr(M) ∈ K est une forme linéaire sur Mn(K).

2. Pour tous A,B ∈Mn(K), on a : tr(AB) = tr(BA).

Propriété 10 (de la trace).

I Il suffit de revenir aux coefficients diagonaux...

Exemple 3 On note tr : M = (mij) ∈Mn(K) 7−→
∑n
i=1mii.

1. Déterminer une base de Ker(tr).

2. En déduire que Ker(tr) = V ect((AB −BA), (A,B) ∈Mn(K)2).

3. On considère φ une forme linéaire non nulle sur Mn(K) et telle que pour tout (A,B) ∈Mn(K)2,

φ(AB) = φ(BA)

Montrer qu’il existe λ ∈ K∗ tel que φ = λtr.

Définition Soit M ∈ Mn(K) une matrice carrée dont on note (mij) les coefficients. On appelle transposée de M la matrice
notée MT ∈Mn(K) définie par :

MT = (m′ij) , avec pour tout (i, j) ∈ J1, nK2, m′ij = mji

Remarque On retiendra qu’elle est simplement obtenue en échangeant les lignes et les colonnes de A. On pourrait de la
même façon définir la transposée d’une matrice à n lignes et p colonnes...

1. L’application φ : M ∈Mn(K) 7−→ MT ∈Mn(K) est un automorphisme involutif de Mn(K).

2. Pour tous A,B ∈Mn(K), on a : (AB)T = BTAT .

3. Si de plus, A ∈ GLn(K), alors AT ∈ GLn(K) et (AT )−1 = (A−1)T .

Propriété 11 (de la transposée).

I Le premier point est immédiat en dimension finie ; pour le second, on reviendra aux coefficients du produit matriciel. Le
dernier point s’obtient alors en transposant l’égalité AA−1 = In.
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Définition Soit n ∈ N∗. Dans Mn(K), on définit alors :

• l’ensemble des matrices symétriques par :

Sn(K) = {M ∈Mn(K), MT = M} = {M ∈Mn(K), mji = mij}

• l’ensemble des matrices antisymétriques par :

An(K) = {M ∈Mn(K), MT = −M} = {M ∈Mn(K), mji = −mij}

Soit n ∈ N∗. Alors, Sn(K) et An(K) sont des sous-espaces vectoriels de Mn(K) de dimensions respectives
n(n+ 1)

2
et

n(n− 1)

2
tels que :

Mn(K) = Sn(K)⊕An(K)

Théorème 12 (décomposition de Mn(K)).

I Pour le premier point, on essaie de les écrire sous forme de V ect. Il suffira alors de revenir à la caractérisation des sev
supplémentaires en dimension finie.

Remarques

1. Pour aller plus vite, on peut aussi rappeler que l’application φ : M 7→MT est une symétrie de Mn(K) de sorte que :

Mn(K) = Ker(φ− id)⊕Ker(φ+ id) = Sn(K)⊕An(K)

2. Attention, la matrice d’une symétrie n’est pas nécessairement symétrique. Une matrice symétrique ne représente pas
nécessairement une symétrie.

2 Cas particulier des changements de base

2.1 Matrices de passage

Définition Soit E un K-espace vectoriel de dimension finie dont on note B et B′ deux bases de E. On appelle matrice de
passage de B = (ei) à B′ = (e′i) la matrice de Mn(K) qui décrit les nouveaux vecteurs dans la base B :

PBB′ = MatB(e′i)

Remarques

1. Avec les notations de la définition, PBB′ pourra aussi être vue comme la matrice de l’identité de (E,B′) sur (E,B) :

PBB′ = MatB(e′i) = MatB′B(idE)

et il conviendra de choisir l’une ou l’autre de ces interprétations en fonction de l’exercice demandé.

2. On en déduit alors que PBB′ ∈ GLn(K) et (PBB′)
−1 = PB′B .

Soit E un K-espace vectoriel de dimension finie dont on note B = (ei) et B′ = (e′i) deux bases de E. On considère x ∈ E tel
que :

x = x1e1 + . . .+ xnen et x = x′1e
′
1 + . . .+ x′ne

′
n

Alors :
X = PX ′ ⇔ X ′ = P−1X

où X,X ′ désignent les vecteurs-colonnes associés aux composantes de x dans les bases B et B′, et P = PBB′ associée au
changement de bases.

Théorème 13 (effets sur les composantes d’une vecteur).

I On considère l’application id définie sur E à valeur dans E afin de traduire l’égalité x = id(x).
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Soient E,F des K-espace vectoriels de dimension finie dont on note B,D des bases de E, B′, D′ des bases de F , et on
considère f ∈ L(E,F ).

1. Si on note M = MatBB′(f) et M ′ = MatDD′(f), alors :

M = QM ′P−1 ⇔M ′ = Q−1MP

avec les matrices de passage P = PBD et Q = PB′D′ , associées aux changements de bases dans E et F .

2. Et dans le cas particulier où f est un endomorphisme de E, on a :

M = PM ′P−1 ⇔M ′ = P−1MP , avec P = PBD associée au changement de bases dans E.

Théorème 14 (effets sur la matrice d’une application linéaire).

I On se ramène à des diagrammes commutatifs pour pouvoir décomposer les applications de E dans F , et obtenir les égalités
souhaitées.

2.2 Relations d’équivalence et de similitude

Définition

• Soient M,M ′ ∈ Mnp(K). On dit que M et M ′ sont équivalentes si M et M ′ représentent une même application linéaire
dans des bases différentes, c’est à dire s’il existe (P,Q) ∈ GLp(K)× GLn(K) tel que :

M = QM ′P−1

• Soient M,M ′ ∈ Mn(K). On dit que M et M ′ sont semblables si M et M ′ représentent un même endomorphisme dans
des bases différentes, c’est à dire s’il existe P ∈ GLn(K) tel que :

M = PM ′P−1

Remarque Ces relations binaires désignent des relations d’équivalence, au sens où elles sont réflexives, symétriques
et transitives.

Soit M ∈Mnp(K). Si rg(M) = r, alors A est équivalente à la matrice Jr définie par :

Jr =

(
Ir 0
0 0

)
Théorème 15 (réduction d’une matrice de rang r).

I Tout découle du théorème du rang : on détermine une décomposition de E avant de construire des bases adaptées, tout en
faisant attention de bien vérifier les hypothèses du théorème de la base incomplète.

Soient M,M ′ ∈Mnp(K).
M et M ′ sont équivalentes ⇔ rg(M) = rg(M ′)

Corollaire 16 (caractérisation des matrices équivalentes).

I Le premier fera appel à la conservation du rang par des isomorphismes; pour la réciproque, on exploitera la réduction d’une
matrice de rang r.

En effet, pour le sens réciproque, si deux matrices sont de même rang r, le théorème précédent nous livre l’existence de
matrices de passage telles que :

M = QJrP
−1 et M ′ = RJrS

−1

En isolant Jr dans la seconde égalité, on peut alors écrire dans la première :

M = Q(R−1M ′S)P−1

Par associativité, on reconnait deux matrices inversibles de sorte que M = (QR−1)M ′(SP−1) et ces matrices sont équivalentes
au sens de la définition.
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Remarques On ne confondra pas les notions de matrices équivalentes et matrices semblables.

1. Si deux matrices carrées sont semblables, alors elles sont nécessairement équivalentes mais la réciproque est fausse :

par exemple, on pourra considérer la matrice M =

(
1 1
0 1

)
dans M2(R).

2. Avec le rang, il est donc très facile de vérifier que deux matrices sont équivalentes. Par contre, pour montrer que deux
matrices sont semblables, il faudra revenir à la définition et montrer qu’elles représentent un même endomorphisme
dans des bases distinctes... et cela malgré la donnée de quelques invariants de similitude.

Soient M,M ′ ∈Mn(K) des matrices qu’on suppose semblables. Alors,

1. rg(M) = rg(M ′)

2. tr(M) = tr(M ′)

On dit que ce sont des invariants de similitude, mais attention ils ne caractérisent pas la similitude des deux matrices.

Propriété 17 (invariants de similitude).

I C’est immédiat et cela découle des propriétés précédentes sur les matrices semblables et de la trace.

Exemple 4 On considère la matrice A ∈M3(R) par :

A =

 2 −3 −1
1 −2 −1
−2 6 3



Montrer que A est semblable à la matrice B =

1 0 0
0 1 1
0 0 1

.

2.3 Sous-espaces stables et premiers exemples de réduction

Définition Soient E un K-espace vectoriel et f ∈ L(E). On dit qu’un sous-espace vectoriel F est stable par f ou que f stabilise
F si f(F ) ⊂ F .

Soient E un K-espace vectoriel, f ∈ L(E) et considérons F un sous-espace vectoriel de E tel que F = V ect((ei)i∈I).
Alors, F est stable par f si et seulement si pour tout i ∈ I, f(ei) ∈ F .

Propriété 18 (cas particulier d’un sous-espace vectoriel engendré par une famille de vecteurs).

I On procède par double implication : le sens direct est immédiat. Pour le sens réciproque, il suffit de revenir à une
décomposition finie de x ∈ F et d’invoquer la linéarité de f .

Soit E un K-espace vectoriel et considérons f, g ∈ L(E) tels que f ◦ g = g ◦ f . Alors, on a :{
Ker(f) et Im(f) sont stables par g

Ker(g) et Im(g) sont stables par f

Propriété 19 (endomorphismes qui commutent).

I On revient à la définition d’un sous-espace stable.

Exemple 5 Soit E un K-espace vectoriel de dimension n > 1 et f un endomorphisme nilpotent non nul de E tel que :

fn−1 6= 0 et fn = 0

1. Montrer que la suite des noyaux itérés (Ker(fk))0≤k≤n désigne une suite de sous-espaces stables par f et qui est strictement
croissante au sens de l’inclusion de sorte que :

{0E} ⊂ Ker(f) ⊂ Ker(f2) ⊂ . . . ⊂ Ker(fn) = E

2. En déduire que pour tout k ∈ J0, nK, dim(Ker(fk)) = k.
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Définition Soient E un K-espace vectoriel et F un sous-espace vectoriel stable par f ∈ L(E). On appelle endomorphisme
induit par f l’endomorphisme noté fF ∈ L(F ) défini par :

fF : x 7−→ f(x)

Remaque Attention, c’est très subtil mais il faudra distinguer la restriction d’un endomorphisme f notée f|F définie par :

f|F : x ∈ F 7−→ f(x) ∈ E

et l’endomorphisme induit noté fF qui, du fait de la stabilité de F , est bien définie sur F à valeurs dans F . Bien entendu,
quand le sous-espace est stable, les deux notions cöıncideront.

Soit E un K-espace vectoriel de dimension finie tel que E = ⊕pi=1Fi et notons B = ∪pi=1Bi une base adaptée à cette
décomposition. Alors, f stabilise chacun des sous-espaces Fi si et seulement si MatB(f) est diagonale par blocs de la forme :

MatB(f) =


A1 0 . . . 0
0 A2 . . . 0
...

. . .
. . .

...
0 . . . 0 Ap


où pour tout i ∈ J1, pK, le bloc Ai est carré d’ordre dim(Fi).
Et dans ce cas, on a immédiatement pour tout i ∈ J1, pK, Ai = MatBi(fFi).

Théorème 20 (décomposition en somme directe de sous-espaces stables).

I On procède par double implication et la preuve est immédiate.

Remarque Ce théorème est fondamental car il traduit l’enjeu du chapitre sur la réduction des endomorphismes : en
effet, on cherchera à chaque fois à obtenir une décomposition de l’espace en somme directe de sous-espaces stables et pour
lesquels les endomorphismes induits seront plus faciles à étudier... soit parce qu’on aura des homothéties, soit parce qu’on
pourra exhiber des opérateurs nilpotents.

Soit E un K-espace vectoriel de dimension finie et considérons f un projecteur de E et s une symétrie vectorielle de E. Alors,
il existe des bases B et B′ de E dans lesquelles on a :

MatB(f) =

(
Ir Or,n−r

On−r,r On−r,n−r

)
et MatB′(s) =

(
Ir Or,n−r

On−r,r −In−r

)

Corollaire 21 (cas particulier des projecteurs et des symétries).

I On revient aux décompositions sous-jacentes de l’espace E, et on construit une base adaptée à ces décompositions.

Remarque Ce dernier résultat nous permet même d’affirmer que projecteurs et symétries sont diagonalisables : on a
trouvé une base de réduction dans laquelle la matrice de ces endomorphismes est diagonale.

3 Déterminant d’une matrice carrée

3.1 Définition et premières propriétés

Définition Soit M = (mij) ∈Mn(K) et notons (C1, . . . , Cn) les vecteurs-colonnes qu’on choisit d’identifier à des vecteurs de Kn
muni de sa base canonique (ei).
On pose f = det(ei) le déterminant dans la base canonique, on appelle alors déterminant de la matrice M le réel défini par :

det(M) = f(C1, . . . , Cn) =
∑
σ∈Sn

ε(σ)mσ(1)1mσ(2)2 . . .mσ(n)n

Avec les notations de la définition, et le déterminant étant une forme n-linéaire alternée, on a immédiatement :

1. det(In) = 1 et pour tout λ ∈ K, det(C1, . . . , λ.Ci, . . . , Cn) = λ.det(C1, . . . , Cn)

2. pour tout (i, j) ∈ J1, nK2, i < j, det(C1, . . . , Cj , . . . , Ci, . . . , Cn) = −det(C1, . . . , Ci, . . . , Cj , . . . , Cn)

3. pour tout (λ1, . . . , λn) ∈ Kn, det(C1, . . . , Ci +
∑
k 6=i

λkCk, . . . , Cn) = det(C1, . . . , Cn)

Propriété 22 (conséquences immédiates de la définition).
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1. Soit M ∈M2(K), alors :

det(M) =

∣∣∣∣m11 m12

m21 m22

∣∣∣∣ = m11m22 −m21m12

2. Soit M ∈M3(K), alors la méthode de Sarrus nous permet d’obtenir le déterminant de la façon suivante :

det(M) =

∣∣∣∣∣∣
m11 m12 m13

m21 m22 m23

m31 m32 m33

∣∣∣∣∣∣

Propriété 23 (calcul en petite dimension).

I On revient à la définition et on cherchera à identifier Sn pour n = 2 ou n = 3.

Remarque Cette méthode de Sarrus n’est pas la méthode la plus efficace : elle n’est valable que pour les matrices 3× 3, et
on verra bientôt d’autres règles de calcul plus rapides à mettre en oeuvre.

Soient λ ∈ K, A,B ∈Mn(K). Alors, on a :

1. det(λA) = λndet(A)

2. det(AB) = det(A).det(B) = det(BA).

3. det(AT ) = det(A)

Propriété 24 (autres propriétés du déterminant).

I Encore une fois, on reviendra aux propriétés du déterminant comme forme n-linéaire alternée sur Kn... Pour le dernier
point, on se ramènera à la définition explicite du déterminant en notant (a′ij) les coefficients de AT .

En effet, pour ce dernier point, on a par définition :

det(AT ) =
∑
σ∈Sn

ε(σ)a′σ(1)1 . . . a
′
σ(n)n =

∑
σ∈Sn

ε(σ)a1σ(1) . . . anσ(n) =
∑
σ∈Sn

ε(σ)aσ−1◦σ(1)σ(1) . . . aσ−1◦σ(n)σ(n)

or l’ensemble des images σ(k) recouvre les entiers 1 à n et ainsi, on peut réécrire quitte à permuter les termes :

det(AT ) =
∑
σ∈Sn

ε(σ)aσ−1(1)1 . . . aσ−1(n)n

Enfin, quand σ parcourt Sn, il en est de même pour σ−1, et ainsi avec ε(σ−1) = ε(σ) :

det(AT ) =
∑

σ−1∈Sn

ε(σ−1)aσ−1(1)1 . . . aσ−1(n)n = det(A)

Remarque Cette dernière propriété nous permet d’étendre les propriétés du déterminant sur les colonnes aux lignes de la
matrice.

Soit M ∈Mn(K). Alors :

M ∈ GLn(K)⇔ det(M) 6= 0, et dans ce cas, det(M−1) =
1

det(M)
.

Théorème 25 (caractérisation des matrices inversibles à l’aide du déterminant).

I On procède par double-implication en rappelant que M est inversible si et seulement si les vecteurs colonnes désignent une
base de Mn1(K), ou à identiffication près de Kn. Pour le sens direct, il suffira d’utiliser la propriété précédente.

Soit E un K-espace vectoriel de dimension finie n et dont on donne (ei) une base de E. Alors :

1. Une famille de vecteurs (v1, . . . , vn) de E est une base ⇔ det(Mat(ei)(vi)) 6= 0.

2. Un endomorphisme f de E est bijectif ⇔ det(Mat(ei)(f)) 6= 0.

Corollaire 26 (conséquences algébriques).
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Remarques

1. En fait, si A et B représentent un même endomorphisme dans des bases distinctes, alors on a :

det(A) = det(PBP−1) = det(B)

Ainsi, on peut retenir que le déterminant de la matrice d’un endomorphisme ne dépend pas de la base choisie : c’est un
invariant de similitude et on appellera donc déterminant d’un endomorphisme le déterminant de sa matrice
dans n’importe quelle base de E.

2. Pour des matrices de taille quelconque, il n’est pas facile de calculer le déterminant. On cherchera souvent à mettre en
place des opérations élémentaires sur les lignes ou les colonnes, et ceci afin de se ramener à une matrice triangulaire :
le calcul du déterminant revient alors au produit des coefficients diagonaux.

Soit M = (mij) ∈Mn(K). Si de plus M est triangulaire supérieure (ou diagonale), alors : det(M) =
∏n
i=1mii.

Propriété 27 (cas particulier du déterminant d’une matrice triangulaire ou diagonale).

I On revient à la définition du déterminant et on discute les éléments σ décrivant la somme. Le second point est un cas
particulier du premier.

3.2 Formules de développement et applications

Définition Soient n ≥ 2 et M = (mij) ∈Mn(K). On appelle cofacteur d’indice (i, j) l’expression :

(−1)i+j∆ij

où ∆ij désigne le déterminant de la matrice deMn−1(K) constituée des coefficients de M privée de sa i-ème ligne et de sa j-ème
colonne.

Soit M ∈Mn(K) telle que :

M =


m11 m12 . . . m1n−1 0
m21 m22 . . . m2n−1 0

...
. . .

. . .
... 0

mn1 . . . . . . mnn−1 mnn

 , alors det(M) = mnn∆nn

Propriété 28 (lemme technique).

I On revient à la définition du déterminant et on discute les éléments σ décrivant la somme.

Soit M = (mij) ∈Mn(K). On peut alors calculer le déterminant de M suivant...

• la j-ème colonne, c’est à dire qu’à j fixé : det(M) =
∑n
i=1mij .(−1)i+j∆ij .

• la i-ème ligne, c’est à dire qu’à i fixé : det(M) =
∑n
j=1mij .(−1)i+j∆ij .

Théorème 29 (formules de développement suivant une ligne ou une colonne).

I Pour le premier point, on développe le calcul du déterminant suivant la j-ème colonne et par linéarité, on essaie de se
ramener à une matrice pour laquelle la dernière colonne est presque nulle.

Exemple 6

1. Calculer les déterminants suivants :

∣∣∣∣∣∣
1 2 5
1 0 1
2 −1 1

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
2 5 2
0 4 0
3 −1 1

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
1 1 −1
0 5 3
0 −1 1

∣∣∣∣∣∣.
2. Soit n ∈ N∗ (n ≥ 3), déterminer une relation de récurrence entre Dn, Dn−1 et Dn−2 avec:

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0
b a b 0

0 b
. . .

. . .
...

...
. . .

. . . a b
0 . . . b a

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

, puis déterminer Dn (n ∈ N∗) pour (a, b) = (2, 1).
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Remarque Cette formule de développement admet plusieurs conséquences utiles : dans certains cas, elle nous permet
d’obtenir certaines relations de récurrence dans le calcul de déterminant de taille n. D’autre part, elle nous permet aussi
de prolonger le calcul de déterminant des matrices triangulaires ou diagonales aux matrices triangulaires ou diagonales par
blocs... c’est très efficace !

Soit M = (mij) ∈Mn(K) qu’on suppose triangulaire par blocs (ou diagonale par blocs) de sorte que :

M =


A11 A12 . . . A1p

0 A22 . . . A2p

...
. . .

. . .
...

0 . . . 0 App


avec pour tout i ∈ J1, pK, Aii des blocs carrés, alors on a encore :

det(M) = det(A11).det(A22). . . . det(App)

Corollaire 30 (cas particulier du déterminant d’une matrice triangulaire ou diagonale par blocs).

I Cela repose en partie sur la formule du déterminant d’un produit, mais aussi sur le principe de développement suivant une
ligne ou une colonne.

Exemple 7 Soient a1, . . . , an ∈ K. Montrer que le déterminant de Vandermonde défini par :

V (a1, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 . . . an−1
1

1 a2 a22 . . . an−1
2

...
...

...
...

1 an−1 a2n−1 . . . an−1
n−1

1 an a2n . . . an−1
n

∣∣∣∣∣∣∣∣∣∣∣
[n]

=
∏

1≤i<j≤n

(aj − ai)

Définition Soient n ≥ 2 et M = (mij) ∈Mn(K).
On appelle alors comatrice de M la matrice des cofacteurs définie par :

C(M) = ((−1)i+j∆ij)1≤i,j≤n

Avec les notations de la définitions, alors on a :

1. M.C(M)T = C(M)T .M = det(M)In

2. Si de plus, M est inversible, alors M−1 =
1

det(M)
C(M)T .

Propriété 31 (expression de l’inverse à l’aide de la comatrice).

I Si le second point découle du premier, on montrera le premier résultat en se ramenant au coefficient du produit matriciel.

Remarque Cette dernière propriété est intéressante pour des exercices formels... car malheureusement, la détermination
pratique de l’inverse par la comatrice est assez lourde en calculs pour des matrices de dimension importante. On préfèrera
donc inverser à la main un système de la forme AX = B pour obtenir A−1.

Soit (S) un système d’équations linéaires à n équations et n inconnues et notons AX = Y la représentation matricielle
associée. De plus, on suppose que (S) est un système de Cramer, c’est à dire que det(A) 6= 0.
Alors, il existe une unique solution X ∈Mn1(K) et en notant C1, . . . , Cn les colonnes de A, on a :

∀ k ∈ J1, nK, xk =
1

det(A)
det(C1, . . . , Ck−1, Y, Ck+1, . . . , Cn)

Propriété 32 (résolution d’un système de Cramer).

I L’existence et l’unicité résultent du déterminant non nul. Reste à déterminer la forme des solutions en partant du
déterminant donné. On pourra introduire la base canonique de Mn1(K) et utiliser la n-linéarité du déterminant.
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