Chapitre 1

Matrices d’une famille de vecteurs ou d’une application linéaire

Apres avoir retravaillé quelques notions fondamentales d’algébre linéaire, on revient
sur les matrices et leur utilisation en algébre, que ce soit pour étudier une famille
de vecteurs ou une application linéaire. Leurs propriétés sont trés mombreuses, et
celles-ci nous permettront de mieux comprendre tout l'intérét de la réduction des
endomorphismes en dimension finie.
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Pour aller plus loin

Ces premiers chapitres de révisions d’algebre linéaire sont importants car ils nous préparent tout doucement aux chapitres
fondamentaux de spé : celui sur la réduction des endomorphismes et celui sur les endormorphismes remarquables d’un
espace euclidien. D’ailleurs, ces notions recouvrent presque tous les sujets de concours en algebre... On essaiera donc de
bien comprendre I'objectif sous-jacent : a partir d’'une décomposition de I’espace bien choisie, on peut obtenir des tableaux
numériques plus faciles & manipuler, et ainsi rendre plus facile la résolution de certains problémes algébriques.
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1 DMatrices d’une famille de vecteurs ou d’une application linéaire

1.1 Rappel des premiéres définitions

Définition Soient n,p deux entiers > 1. On appelle matrice & n lignes et p colonnes toute représentation de la forme :

mi e Mmoo map
M=|ma - my - myp
Mn1 o0 Mg o My

ot pour tout (z,7) € [1,n] x [1,p], mi; désigne le coefficient de la matrice d’indice (i, ).

On note encore M, (K) Iensemble des matrices & n lignes et p colonnes & coefficients dans K, ou plus simplement M, (K)
I’ensemble des matrices a n lignes et n colonnes.

D’ailleurs, on rappelle que pour toutes matrices A = (a;;), B = (bi;) € Mn(K), et pour tout A € K, on peut définir les
opérations suivantes :

A+ B = (aij + bi;)

)\A = ()\a,])

A x B = (ci;) ot pour tout (i,7) € [1,n]?, cij = S p_, airbr;

{Propriété 1 (structure d’espace vectoriel).]

Soit n € N*. Alors, muni de ces opérations, on peut montrer que (M, (K), +, X,.) constitue une K-algébre non commu-
tative, c’est a dire que :

o (M, (K),+, x) est un anneau non commutatif

o (M,(K),+,.) est un espace vectoriel de dimension n? et dont on donne ici la base canonique :

10 0 0 1 0 0 0 0
Ea= |00 0] p,={00 0 g _[0oo0 0
) 0 © 0 0 S0 1

Remarques

1. Cette structure algébrique est commode car elle nous permet d’opérer facilement sur les matrices, par contre on ne
négligera pas ses limites : elle est non commutative et on peut montrer qu’elle n’est pas integre...

2. On fera aussi trés attention avec les formules usuelles. On pourra en effet appliquer les formules du binéme de Newton
et de factorisation, & condition que les matrices en jeu commutent.
Autrement dit, si AB = BA, alors on a pour tout n € N*,

n n—1
(A+B)" =) (M)A*B" " et A" —B"=(A-B) Y A"B"'"*
k=0 k=0
. . e A B . .
3. Les matrices peuvent aussi étre définies par blocs de la forme M = c p) mais dans ce cas, on restera vigilant car

les opérations sur les matrices par blocs seront licites dés lors que les tailles des blocs considérés seront compatibles.

{Propriété 2 (produit et matrices élémentaires).]

Soient (E;;) les matrices élémentaires de M,,(K) et A € M, (K). Alors :

1,sij=k
Eij X Exi = 01 Ey, ou le symbole de Kronecker vérifie : d;, = { S? J
0, sinon

» [l suffit d’écrire le produit matriciel en respectant le produit ligne-colonne...
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Exemple 1 On note C' = {A € M,(K)| VM € M,(K), AM = MA} le centre de 'algebre M, (K).
Soit A € M, (K).

1. Montrer que A € C <= V(i,j) € [1,n]?, AE;; = E;;A.
2. En déduire que C est ’ensemble des matrices scalaires de la forme : Al,, A € K.
Remarque Les matrices nous donnent ici une nouvelle structure algébrique, mais elles seront vraiment utiles en algebre

linéaire. En effet, ces tableaux et les opérations sous-jacentes nous donneront un moyen de modéliser rapidement tous nos
problémes sur les espaces vectoriels.

Définition Soit E un K-espace vectoriel de dimension finie n > 1 dont on note B = (e1,...,e,) une base de E.
Si on considere des vecteurs z1,...,2p, € E, alors tous ces vecteurs se décomposent de fagon unique de sorte que pour tout
j € [1,p]:
n
T; = T1€e1 + ...+ Tnjen = Zmijei
i=1
On construit ainsi la matrice :
T o Ty cec Tip
MatB(zl,...,:cp): Tyl v Tig o Tip
"Enl DEEERY In] CEEEEY znp
On dit qu’il s’agit de la matrice des vecteurs (z;) suivant la base B et on notera X1, ..., X, les vecteurs-colonnes de M1 (K)
constitués des composantes des vecteurs z1,...,z, dans la base B.
{Propriété 3 (isomorphisme Canonique).]
Soit E un K-espace vectoriel de dimension finie n > 1 dont on note B = (e1, ..., en) une base de E.
L’application ¢ : (21,...,2p) € EP +— Matp(x;) € Mnp(K) désigne un isomorphisme d’espaces vectoriels.

» C’est immédiat : comme dim(EP) = np = dim(Manp(K)), on se raméne a la caractérisation d’un isomorphisme en dimen-
sion finie.

Remarque Cet isomorphisme nous permettra ainsi de voir n’importe quelle matrice comme la matrice d’une famille de
vecteurs dans une base donnée.

Définition Soient E, F' deux K-espace vectoriel de dimensions finies et on note B = (e1,...,e,) une base de E, B' = (f1,..., fn)
une base de F. Si f € L(FE, F), alors on appelle matrice de f suivant les bases B et B’ la matrice a n lignes et p colonnes
constituée des composantes des vecteurs f(e;) dans la base B’ :

mll CEEEEY ml] CEEEEY mlp
Matgp/ (f)=| ma - miy - M
Mn1 e Mnj e Mnp

avec pour tout j € [1,p], f(e;) = > 1, mij fi.

Remarque Dans le cas particulier ot f = idg, alors on note Matg(idg) la matrice associée et on a :

Matp(idg) = diag(1,...,1) notée I,

Propriété 4 (isomorphisme canonique).]

Soient E, F deux K-espace vectoriel de dimensions finies. On note B = (ei,...,ep,) une base de E, B = (fi,..., fn) une
base de F.
L’application ¢pp/ : f € L(E,F)—— Matgp/ (f) € Mnp(K) désigne un isomorphisme d’espaces vectoriels.

» C’est immédiat : comme dim(EP) = np = dim(Manp(K)), on se raméne a la caractérisation d’un isomorphisme en dimen-
sion finie.
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Remarques

1. Cet isomorphisme nous permettra ainsi de voir n’importe quelle matrice comme la matrice d’une application linéaire
dans des bases données. On parlera généralement de 'application linéaire canoniquement associée.

2. En particulier, cet isomorphisme nous donne 1’équivalence suivante : Matpp/(f) = Matgp/(9) & f=g.

{Théoréme 5 (interprétation algébrique du produit par un vecteur colonne).]

Soient E, F deux K-espace vectoriel de dimensions finies. On note B = (e1,...,ep,) une base de E, B’ = (fi,..., fn) une
base de F.
Si f € L(E,F), alors en notant M = Matgp/(f), on a :

y=f(z) &Y =MX , avec X,Y les vecteurs-colonnes de My1(K) constitués des composantes de x € E et y € F.

» On exprime simplement f(x) dans les bases données et on fera attention au choiz des indices de lignes et colonnes.

Remarque Ce résultat est fondamental : il nous permet alors d’interpréter ces opérations matricielles comme des opérations
sur les applications canoniquement associées et ainsi, on obtient le corollaire suivant :

{Corollaire 6 (interprétation algébrique du produit de deux matrices).]

Soient E, F, G des K-espaces vectoriels de dimensions finies dont on note B, B’ et B” des bases de E, F et G.
1. Si fe L(E,F) et g € L(F,G), alors Matppr(g) x Matgp/ (f) = Matgpr(go f).

2. De la méme facon, si f € L(E), alors pour tout k € N*, [Matg(f)]* = Mats(f*).

1.2 Matrices inversibles et groupe linéaire d’ordre n

Définition Soit A € M, (K). On dit que A est inversible s’il existe B € M, (K) telle que :

AB=BA=1,

La matrice B est alors appelée I'inverse de A et elle sera notée A~

{Propriété 7 (premiere caractérisation).]

Soient M € M, (K), E un K-espace vectoriel de dimension finie et dont on note B une base. Si f désigne 'endomorphisme
de E canoniquement associé a M, alors :
M est inversible & f € GL(E)

Et dans ce cas, M~' = (Matg(f))™" = Mats(f™).

» On procéde par double implication ; pour la réciproque, on fera appel a lisomorphisme canonique ¢ppg.

{Corollaire 8 (autres caractérisations des matrices inversibles).]

Soit M € My (K). Alors, M est inversible si et seulement si I'une des assertions suivantes est vérifiée :

1. les vecteurs-colonnes constituent une base de M,1(K), ou & identification pres de K™
2. M est inversible a gauche

3. M est inversible & droite

Remarque Pour inverser une matrice, il n’y a pas de méthode simple et on pourra toujours chercher & inverser le systéme
linéaire donné par I’équivalence suivante :
-1
AX=B& X=A""B

Bien entendu, on gardera en téte le cas particulier des matrices carrées d’ordre 2 : si ad — bc # 0, alors la matrice associée

est inversible et 'inverse est donnée par :
a BN 1 (d b
¢ d) T ad—bc \—c a
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{Propriété 9 (groupe linéaire d’ordre n)]

Notons GL, (K) I’ensemble des matrices inversibles d’ordre n. Alors :
1. Si A, B € GL,(K), alors AB € GL,(K) et ona: (AB)"'=B~'A~".

2. (GL,(K), x) est un groupe appelé groupe linéaire d’ordre n.

» Le premier point est immédiat puisqu’on vérifiera l’inverse donné; pour le second, on reviendra a la définition d’un groupe
multiplicatif.

Exemple 2 Soient A, B € M,,(R) pour lesquelles on suppose qu’il existe P € R[X] de degré > 1 vérifiant :
P(0)=1et AB= P(A)

Montrer que A € GL,,(R) et que A et B commutent.

1.3 Trace et transposée d’une matrice

Définition Soit M € M, (K) une matrice carrée dont on note (m;;) les coefficients. On appelle trace de M le scalaire noté
tr(M) défini par :

t’I“(M) = Z?:l myq

{Propriété 10 (de la trace).}

1. L’application tr : M € M, (K) — tr(M) € K est une forme linéaire sur M, (K).

2. Pour tous A, B € M,(K), on a: tr(AB) = tr(BA).

» [l suffit de revenir auz coefficients diagonaux...
Exemple 3 On note tr : M = (my;) € Mn(K) — >0 mai.
1. Déterminer une base de Ker(tr).
2. En déduire que Ker(tr) = Vect((AB — BA), (A, B) € M, (K)?).
3. On considére ¢ une forme linéaire non nulle sur M, (K) et telle que pour tout (A4, B) € M, (K)?,
$(AB) = ¢(BA)

Montrer qu’il existe A € K* tel que ¢ = Atr.

Définition Soit M € M, (K) une matrice carrée dont on note (mj;) les coefficients. On appelle transposée de M la matrice
notée M7 € M,,(K) définie par :

M" = (m};) , avec pour tout (i,j) € [1,n]?, mi; = my;

Remarque On retiendra qu’elle est simplement obtenue en échangeant les lignes et les colonnes de A. On pourrait de la
méme fagon définir la transposée d’une matrice a n lignes et p colonnes...

{Propriété 11 (de la transposée).}

1. L’application ¢ : M € Mu(K) — MT € M, (K) est un automorphisme involutif de M, (K).
2. Pour tous A, B € M, (K), on a: (AB)T = BT AT.

3. Side plus, A € GL£,(K), alors AT € GL,(K) et (AT)"! = (4A~HT,

» Le premier point est immédiat en dimension finie ; pour le second, on reviendra aux coefficients du produit matriciel. Le
dernier point s’obtient alors en transposant I’égalité AA™ = I,,.
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Définition Soit n € N*. Dans M,,(K), on définit alors :

e 'ensemble des matrices symétriques par :
Sn(K) = {M € Mu(K), M" = M} = {M € My (K), mj; = mi;}
e ’ensemble des matrices antisymétriques par :

An(K) = {M € M, (K), M" = —M} = {M € M, (K), mj; = —mi;}

{Théor‘eme 12 (décomposition de ./\/ln(K))]

n(n+1)

t
3 e

Soit n € N*. Alors, S,(K) et A,(K) sont des sous-espaces vectoriels de M, (K) de dimensions respectives

M tels que :

Mn(K) = Sn(K) & An(K)

» Pour le premier point, on essaie de les écrire sous forme de Vect. Il suffira alors de revenir a la caractérisation des sev
supplémentaires en dimension finie.

Remarques

1. Pour aller plus vite, on peut aussi rappeler que 'application ¢ : M — M7 est une symétrie de M (K) de sorte que :

Ma(K) = Ker(¢ — id) ® Ker(¢ + id) = S (K) @ A (K)

2. Attention, la matrice d’une symétrie n’est pas nécessairement symétrique. Une matrice symétrique ne représente pas
nécessairement une symétrie.

2 Cas particulier des changements de base

2.1 Matrices de passage

Définition Soit E un K-espace vectoriel de dimension finie dont on note B et B’ deux bases de E. On appelle matrice de
passage de B = (e;) & B’ = (e]) la matrice de M,,(K) qui décrit les nouveaux vecteurs dans la base B :

Pppr = Matg(e})

Remarques

1. Avec les notations de la définition, Pgp/ pourra aussi étre vue comme la matrice de I'identité de (F, B') sur (E, B) :
PBB’ = MatB(e;) = MatB/B(idE)
et il conviendra de choisir 'une ou 'autre de ces interprétations en fonction de I’exercice demandé.

2. On en déduit alors que Ppp € GL,(K) et (Pgp/) ' = Pp/g.

{Théoréme 13 (effets sur les composantes d’une Vecteur).}

Soit F un K-espace vectoriel de dimension finie dont on note B = (e;) et B’ = (e}) deux bases de E. On considere x € F tel
que :
r=ux1€1 4+ ...+ xTnen etx:xllell—i—...—kx;e;
Alors :
X=PX &X' =P'X

ou X, X’ désignent les vecteurs-colonnes associés aux composantes de x dans les bases B et B’, et P = Ppp/ associée au
changement de bases.

» On considére lapplication id définie sur E a valeur dans E afin de traduire I’égalité x = id(x).

www.cpgemp-troyes.fr 6
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{Théoréme 14 (effets sur la matrice d’une application linéaire).]

Soient E, F' des K-espace vectoriels de dimension finie dont on note B, D des bases de E, B’, D’ des bases de F, et on
considére f € L(E, F).

1. Si on note M = Matpp:(f) et M' = Matpp/(f), alors :
M=QM'P ' M =Q 'MP
avec les matrices de passage P = Ppp et Q = Pp/pr, associées aux changements de bases dans E et F'.
2. Et dans le cas particulier ou f est un endomorphisme de E, on a :

M=PMP'ae M =P 'MP , avec P = Ppp associée au changement de bases dans F.

» On se rameéne a des diagrammes commutatifs pour pouvoir décomposer les applications de E dans F', et obtenir les égalités
souhaitées.

2.2 Relations d’équivalence et de similitude

Définition

e Soient M, M’ € M,,,(K). On dit que M et M’ sont équivalentes si M et M’ représentent une méme application linéaire
dans des bases différentes, c’est & dire s’il existe (P, Q) € GL,(K) x GL,,(K) tel que :

M=QM'pP!

e Soient M, M’ € M, (K). On dit que M et M’ sont semblables si M et M’ représentent un méme endomorphisme dans
des bases différentes, c’est a dire 'il existe P € GL,,(K) tel que :

M=p~PMP!

Remarque Ces relations binaires désignent des relations d’équivalence, au sens ou elles sont réflexives, symétriques
et transitives.

{Théoréme 15 (réduction d’une matrice de rang 7)]

Soit M € Mup(K). Sirg(M) = r, alors A est équivalente a la matrice J,. définie par :
I, 0
1= (% o)

» Tout découle du théoréme du rang : on détermine une décomposition de E avant de construire des bases adaptées, tout en
faisant attention de bien vérifier les hypothéses du théoréme de la base incompléte.

Corollaire 16 (caractérisation des matrices équivalentes).]

Soient M, M’ € M, (K).
M et M’ sont équivalentes < rg(M) = rg(M")

» Le premier fera appel a la conservation du rang par des isomorphismes; pour la réciproque, on exploitera la réduction d’une
matrice de rang .

En effet, pour le sens réciproque, si deur matrices sont de méme rang r, le théoreme précédent nous livre [’existence de
matrices de passage telles que :

M=QJ.P' et M =RJ.S™"

En isolant J. dans la seconde égalité, on peut alors écrire dans la premiére :
M=Q(R 'M'S)P™!

T . . . . —1 ’ — 1 . , .
Par associativité, on reconnait deux matrices inversibles de sorte que M = (QR™")M'(SP™") et ces matrices sont équivalentes
au sens de la définition.

www.cpgemp-troyes.fr 7
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Remarques On ne confondra pas les notions de matrices équivalentes et matrices semblables.

1. Si deux matrices carrées sont semblables, alors elles sont nécessairement équivalentes mais la réciproque est fausse :

L 1) dans Mz (R).

par exemple, on pourra considérer la matrice M = (0

2. Avec le rang, il est donc tres facile de vérifier que deux matrices sont équivalentes. Par contre, pour montrer que deux
matrices sont semblables, il faudra revenir & la définition et montrer qu’elles représentent un méme endomorphisme
dans des bases distinctes... et cela malgré la donnée de quelques invariants de similitude.

{Propriété 17 (invariants de similitude).}

Soient M, M’ € M,,(K) des matrices qu’on suppose semblables. Alors,
L rg(M) =rg(M')
2. tr(M) = tr(M")

On dit que ce sont des invariants de similitude, mais attention ils ne caractérisent pas la similitude des deux matrices.

» C’est immédiat et cela découle des propriétés précédentes sur les matrices semblables et de la trace.

Exemple 4 On consideére la matrice A € M3(R) par :

2 -3 -1
A=[1 -2 -1
-2 6 3

= = O

1 0
Montrer que A est semblable & la matrice B= [0 1
0 0

2.3 Sous-espaces stables et premiers exemples de réduction

Définition Soient E un K-espace vectoriel et f € L(E). On dit qu'un sous-espace vectoriel F' est stable par f ou que f stabilise
Fsi f(F)CF.

{Propriété 18 (cas particulier d’un sous-espace vectoriel engendré par une famille de vecteurs).]

Soient E un K-espace vectoriel, f € L(E) et considérons F' un sous-espace vectoriel de E tel que F' = Vect((e:)icr).
Alors, F est stable par f si et seulement si pour tout i € I, f(e;) € F.

» On procéde par double implication : le sens direct est immédiat. Pour le sens réciproque, il suffit de revenir a une
décomposition finie de x € F' et d’invoquer la linéarité de f.

{Propriété 19 (endomorphismes qui commutent).]

Soit E un K-espace vectoriel et considérons f,g € L(FE) tels que fog=go f. Alors, on a :

Ker(f) et Im(f) sont stables par g
Ker(g) et Im(g) sont stables par f

» On revient a la définition d’un sous-espace stable.

Exemple 5 Soit £ un K-espace vectoriel de dimension n > 1 et f un endomorphisme nilpotent non nul de E tel que :

T £0et P =0

1. Montrer que la suite des noyaux itérés (Ker(f*))o<r<n désigne une suite de sous-espaces stables par f et qui est strictement
croissante au sens de I'inclusion de sorte que :

{0g} C Ker(f) C Ker(f?)C...C Ker(f")=E

2. En déduire que pour tout k € [0,n], dim(Ker(f*)) = k.

www.cpgemp-troyes.fr 8
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Définition Soient E un K-espace vectoriel et F' un sous-espace vectoriel stable par f € L(E). On appelle endomorphisme
induit par f ’endomorphisme noté fr € L(F') défini par :

friz— f(z)

Remaque Attention, c’est tres subtil mais il faudra distinguer la restriction d’'un endomorphisme f notée f|r définie par :
firix e Fr— f(zx)e E

et 'endomorphisme induit noté fr qui, du fait de la stabilité de F', est bien définie sur F' & valeurs dans F'. Bien entendu,
quand le sous-espace est stable, les deux notions coincideront.

{Théor‘eme 20 (décomposition en somme directe de sous-espaces stables).]

Soit E un K-espace vectoriel de dimension finie tel que E = @}_, F; et notons B = UY_| B; une base adaptée & cette
décomposition. Alors, f stabilise chacun des sous-espaces F; si et seulement si Matg(f) est diagonale par blocs de la forme :

Al 0 ... 0

0 A ... 0
Matp(f) =

0 ... 0 A,

ol pour tout ¢ € [1, p], le bloc A; est carré d’ordre dim(F;).
Et dans ce cas, on a immédiatement pour tout ¢ € [1,p], A; = Mats, (fr,).

» On procéde par double implication et la preuve est immédiate.

Remarque Ce théoréeme est fondamental car il traduit ’enjeu du chapitre sur la réduction des endomorphismes : en
effet, on cherchera a chaque fois a obtenir une décomposition de ’espace en somme directe de sous-espaces stables et pour
lesquels les endomorphismes induits seront plus faciles a étudier... soit parce qu’on aura des homothéties, soit parce qu’on
pourra exhiber des opérateurs nilpotents.

{Corollaire 21 (cas particulier des projecteurs et des symétries).]

Soit E un K-espace vectoriel de dimension finie et considérons f un projecteur de E et s une symétrie vectorielle de E. Alors,
il existe des bases B et B’ de E dans lesquelles on a :

L~ Orn—r L~ Orn—r
MatB(f) = (O7L77' s O’VL—”V' TL*’I") et MatB, (S) - (OTL*T’ T _I,7L77')

» On revient aux décompositions sous-jacentes de l’espace E, et on construit une base adaptée a ces décompositions.

Remarque Ce dernier résultat nous permet méme d’affirmer que projecteurs et symétries sont diagonalisables : on a
trouvé une base de réduction dans laquelle la matrice de ces endomorphismes est diagonale.

3 Déterminant d’une matrice carrée

3.1 Définition et premieres propriétés

Définition Soit M = (m;;) € My, (K) et notons (C1,...,Cr) les vecteurs-colonnes qu’on choisit d’identifier & des vecteurs de K"
muni de sa base canonique (e;).
On pose f = det,) le déterminant dans la base canonique, on appelle alors déterminant de la matrice M le réel défini par :

det(M) = f(Ch,...,Cpn) = Z €(O)Me(1)1Me(2)2 - - Mo(n)n
oc€Sy

{Propriété 22 (conséquences immédiates de la déﬁnition).j

Avec les notations de la définition, et le déterminant étant une forme n-linéaire alternée, on a immédiatement :
1. det(In) =1 et pour tout A € K, det(C1,...,A.Cs,...,Cr) = Adet(C1,...,Cr)
2. pour tout (i,4) € [1,n]%,i < j, det(C1,...,Cj,...,Ci,...,Cn) = —det(C1,...,Ciy...,Cj,...,Cr)

3. pour tout (A1,...,An) € K, det(Ch,...,Ci+ D AkCh,...,Cr) = det(Cy,...,Ch)
ki
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{Propriété 23 (calcul en petite dimension).]

1. Soit M € M3(K), alors :
mir Mmaz
m21 M2z

det(M) =

= Mmi1m22 — M21M12

2. Soit M € M3(K), alors la méthode de Sarrus nous permet d’obtenir le déterminant de la fagon suivante :

mi1 M1z M3
det(M) = |ma21  ma22 ma3
m31 M3z Ms33

» On revient a la définition et on cherchera a identifier Sy, pour n =2 ou n = 3.

Remarque Cette méthode de Sarrus n’est pas la méthode la plus efficace : elle n’est valable que pour les matrices 3 X 3, et
on verra bientdt d’autres regles de calcul plus rapides a mettre en oeuvre.

{Propriété 24 (autres propriétés du déterminant).]

Soient A € K, A, B € M, (K). Alors, on a :
1. det(AA) = \"det(A)
2. det(AB) = det(A).det(B) = det(BA).
3. det(AT) = det(A)

» Encore une fois, on reviendra auz propriétés du déterminant comme forme n-linéaire alternée sur K"... Pour le dernier
. N N . . . . . / . T
point, on se raménera a la définition explicite du déterminant en notant (aj;) les coefficients de A™.

En effet, pour ce dernier point, on a par définition :
o ATy / / _ i i _ i i
det(A") = g €(0)ag1y1 - Ao(nyn = g €(0)a10(1) - - - Qno(n) = g €(0)r-160(1)0(1) « - - Co—Too(n)o(n)
ocESy TESnh oESn

or l’ensemble des images o (k) recouvre les entiers 1 a n et ainsi, on peut réécrire quitte a permuter les termes :

T\ \
det(A") = Z €(0)ay-101)1 -+ Cp—1(n)n

o€ESh
.~ y . N -1 L -1
Enfin, quand o parcourt Sy, il en est de méme pour o, et ainsi avec e(c” ) = €(o) :

det(A™) = Z elo™Na, (1)1 -+ Qg1 (n)yn = det(A)

oc—les,

Remarque Cette derniére propriété nous permet d’étendre les propriétés du déterminant sur les colonnes aux lignes de la
matrice.

{Théoréme 25 (caractérisation des matrices inversibles & 1’aide du déterminant).}

Soit M € M,(K). Alors :

M € GL,(K) & det(M) # 0, et dans ce cas, det(M ") = m
e

» On procéde par double-implication en rappelant que M est inversible si et seulement si les vecteurs colonnes désignent une
base de Mn1(K), ou a identiffication prés de K™. Pour le sens direct, il suffira d’utiliser la propriété précédente.

{Corollaire 26 (conséquences algébriques).}

Soit E un K-espace vectoriel de dimension finie n et dont on donne (e;) une base de E. Alors :

1. Une famille de vecteurs (v1,...,v,) de E est une base < det(Mat.,)(v:)) # 0.

2. Un endomorphisme f de E est bijectif < det(Mat(.,)(f)) # 0.
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Remarques

1. En fait, si A et B représentent un méme endomorphisme dans des bases distinctes, alors on a :
det(A) = det(PBP™") = det(B)

Ainsi, on peut retenir que le déterminant de la matrice d’'un endomorphisme ne dépend pas de la base choisie : c’est un
invariant de similitude et on appellera donc déterminant d’un endomorphisme le déterminant de sa matrice
dans n’importe quelle base de E.

2. Pour des matrices de taille quelconque, il n’est pas facile de calculer le déterminant. On cherchera souvent & mettre en
place des opérations élémentaires sur les lignes ou les colonnes, et ceci afin de se ramener & une matrice triangulaire :
le calcul du déterminant revient alors au produit des coefficients diagonaux.

Propriété 27 (cas particulier du déterminant d’une matrice triangulaire ou diagonale).]

Soit M = (m;;) € My (K). Si de plus M est triangulaire supérieure (ou diagonale), alors : det(M) =[]

=1 Mii.

» On revient a la définition du déterminant et on discute les éléments o décrivant la somme. Le second point est un cas
particulier du premier.

3.2 Formules de développement et applications

Définition Soient n > 2 et M = (m;;) € M, (K). On appelle cofacteur d’indice (i, j) 'expression :
(=)™ Ay

ot A;; désigne le déterminant de la matrice de M,,_1(K) constituée des coefficients de M privée de sa i-eme ligne et de sa j-eme
colonne.

{Propriété 28 (lemme technique).}

Soit M € My,(K) telle que :

mi1t Mi2 ... Mip—1 0
mai mao2 000 mon—1 0
M = . . . . , alors det(M) = MnnAnn
: 5 5 : 0
Mn1 000 000 Mpn—1 Mnyn

» On revient a la définition du déterminant et on discute les éléments o décrivant la somme.

{Théoréme 29 (formules de développement suivant une ligne ou une colonne).]

Soit M = (my;) € My (K). On peut alors calculer le déterminant de M suivant...
e la j-eme colonne, c’est & dire qu'a j fixé : det(M) = >0 my;.(—1)"7 Ay

e la i-eme ligne, c’est a dire qu’a 7 fixé : det(M) =377, myj.(—1)IA;.

» Pour le premier point, on développe le calcul du déterminant suivant la j-éme colonne et par linéarité, on essaie de se
ramener & une matrice pour laquelle la derniére colonne est presque nulle.

Exemple 6
1 2 5 2 5 2 1 1 -1
1. Calculer les déterminants suivants : {1 0 1| , [0 4 0| , [0 5
2 -1 1 3 -1 1 0 —1 1

a b 0 0
b b 0
D=0 b . .0 , puis déterminer D, (n € N*) pour (a,b) = (2,1).
a b
0 b a

[n]
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Remarque Cette formule de développement admet plusieurs conséquences utiles : dans certains cas, elle nous permet
d’obtenir certaines relations de récurrence dans le calcul de déterminant de taille n. D’autre part, elle nous permet aussi
de prolonger le calcul de déterminant des matrices triangulaires ou diagonales aux matrices triangulaires ou diagonales par
blocs... c’est tres efficace !

{Corollaire 30 (cas particulier du déterminant d’une matrice triangulaire ou diagonale par blocs).]

Soit M = (m;;) € Mxn(K) qu’on suppose triangulaire par blocs (ou diagonale par blocs) de sorte que :

Ann A ... Alp
0 Aoy ... Agp

M= . .
0 ... 0 Ap

avec pour tout i € [[1,p], As; des blocs carrés, alors on a encore :

det(M) = det(Au).det(Agz). 0oo det(App)

» Cela repose en partie sur la formule du déterminant d’un produit, mais aussi sur le principe de développement suivant une
ligne ou une colonne.

Exemple 7 Soient ai,...,a, € K. Montrer que le déterminant de Vandermonde défini par :
2 =il
1 a ai ...oaf
1 a2 a? . ag_l
V(a,...,an) = |: = H (a; — ai)
2 =il 1<i<j<
1 an-1 as_ @y SRS
2 n—1
1 an a, a,

Définition Soient n > 2 et M = (m;) € My (K).
On appelle alors comatrice de M la matrice des cofacteurs définie par :

C(M) = (=)™ Aij)1<ij<n

{Propriété 31 (expression de l'inverse & l'aide de la comatrice).]

Avec les notations de la définitions, alors on a :

1. M.C(M)" = C(M)T.M = det(M)I,

1
2. Si de plus, M est inversible, alors M~ = WC’(M)T.

» Si le second point découle du premier, on montrera le premier résultat en se ramenant au coefficient du produit matriciel.

Remarque Cette derniere propriété est intéressante pour des exercices formels... car malheureusement, la détermination
pratique de I'inverse par la comatrice est assez lourde en calculs pour des matrices de dimension importante. On préféerera
donc inverser & la main un systéme de la forme AX = B pour obtenir A™'.

{Propriété 32 (résolution d’un systéme de Cramer).]

Soit (S) un systeme d’équations linéaires & n équations et m inconnues et notons AX = Y la représentation matricielle
associée. De plus, on suppose que (S) est un systéeme de Cramer, c’est & dire que det(A) # 0.

Alors, il existe une unique solution X € M1 (K) et en notant C1,...,C, les colonnes de A, on a :
1
VEkell = ——det(Cy,...,Ck-1,Y,Crt1,-..,C
EII 7n]]7 Tk d@t(A) € ( 1, s Uk—1, 1, Uk+1, ) n)

» L’existence et l'unicité résultent du déterminant non nul. Reste & déterminer la forme des solutions en partant du
déterminant donné. On pourra introduire la base canonique de My1(K) et utiliser la n-linéarité du déterminant.
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