Chapitre 0

Espaces vectoriels et cas particulier de la dimension finie

Théoreme du rang et applications

Pour aller plus loin

Ce chapitre est important car il nous prépare tout doucement aux chapitres fondamentaux de spé : celui sur la réduction
des endomorphismes et celui sur les endormorphismes remarquables d’un espace euclidien. D’ailleurs, ces notions recouvrent
presque tous les sujets de concours en algébre... On essaiera donc de bien comprendre 1’objectif sous-jacent : a partir d’une
décomposition de I’espace bien choisie, on peut obtenir des tableaux numériques plus faciles & manipuler, et ainsi rendre plus
facile la résolution de certains problémes algébriques.

Définition Soient F, ' deux K-espaces vectoriels et f : E — F. On rappelle que f est un morphisme d’espaces vectoriels
ou plus simplement une application linéaire si elle respecte les lois associées, c’est a dire si :

VAeK, Va,yeE, fAx+y)=A(z)+ f(y)

On note encore L(E, F') Pespace vectoriel des applications linéaires de F dans F', et en particulier,

e on rappelle que f est un isomorphisme s’il s’agit d’une application linéaire bijective.
e on rappelle que f est un endomorphisme s’il s’agit d’une application linéaire de E dans lui-méme, c’est a dire f € L(F).

e on rappelle que f est un automorphisme s’il s’agit d’un endomorphisme bijectif, c’est a dire f € GL(E).

{Théor‘eme 1 (caractérisation de I'injectivité et la surjectivité d’une application linéaire).}

Soient E, F' deux K-espaces vectoriels et f : E — F une application linéaire. Alors,
1. f est injective & Ker(f) = {0r}

2. f est surjective & Im(f) =F

» Seul le premier point mérite notre attention; il suffit en fait de procéder par double implication et on n’oubliera pas que f
est ici une application linéaire.

{Propriété 2 (image d’une base par une application linéaire).]

Soient E, F' deux K-espaces vectoriels de dimension finie, et f € L(E, F'). Alors, en notant (e1,...,e,) une base quelconque
de £ :

1. Im(f) = Vect(f(er),-.., f(en)).

2. f est bijective si et seulement si f(e1),..., f(en) constituent une base de F.

Et si ce dernier cas est vérifié, on en déduit que : dim(F) = dim(F’) et les espaces sont dits isomorphes.

» Le premier point est immédiat, et pour le second, on procéde par double implication.

{Théoréme 3 (dimension de L(E, F))]

Soient E, F' deux K-espaces vectoriels de dimension finie. Alors, L(E, F) est un K-espace vectoriel de dimension finie vérifiant

dim(L(E, F)) = dim(E) x dim(F)
En pariculier, on a : dim(L(E)) = dim(L(E, E)) = dim(E)*.
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» Pour une base (e;), on construit ¢ : f — (f(e1),..., f(en)) € F™ et on montre qu’il s’agit d’un isomorphisme.

En effet, la linéarité de ¢ est immédiate par opérations sur les n-uplets. De plus,
e soit f € L(E,F), alors ¢(f) =0pn < Vi € [1,n], f(e;) =0r, ce qui donne f =0 et ainsi, ¢ est injective.

e considérons alors (yi1,. .., yn) € F™, on peut définir application linéaire f par f : e; — y;, et par linéarité on obtient
bien une application linéaire de E dans F'. Par conséquent, (y1,...,yn) = ¢(f) et ¢ est surjective.

On en déduit que ¢ est un isomorphisme et par passage auzx dimensions, dim(L(E, F)) = dim(F") = n.dim(F) = dim(E).dim(F).

Remarque En particulier, cet isomorphisme traduit le fait qu’une application linéaire est entierement déterminée par I'image
d’une base. Et ainsi, on pourra retenir que pour deux applications linéaires f et g :

f=geVic[ln], f(ei)=g(e)

{Théoréme 4 (du rang et formule du rang associée).]

Soient E, F' deux K-espaces vectoriels et f € L(E, F). Si E est de dimension finie, alors tout supplémentaire de Ker(f) est
isomorphe & I'm(f) et dans ce cas, en notant rg(f) = dim(Im(f)), il vient :

dim(E) = dim(Ker(f)) + rg(f)

» On note G un supplémentaire de Ker(f) dans E et on construit ¢ : x € G — f(z) € Im(f) dont on montre qu’elle définit
un isomorphisme de G sur Im(f).

Ce théoreme fondamental est tres pratique car étant donné des informations sur le noyau, on en déduit dans le cas d’espaces
vectoriels de dimension finie, des informations sur I'image et réciproquement !

Exemple 1 Soit n € N. On considére f l'application définie sur R, [X] par :
f:P— f(P)=P(X+1)+P(X —1)—2P(X)
1. Montrer que f est un endomorphisme de R, [X].

2. Déterminer Ker(f), puis en déduire Im(f).

{Propriété 5 (invariance du rang par composition avec un isomorphisme).]

Soient F, F' deux K-espaces vectoriels de dimension finie et f € L(F, F'). On suppose de plus que g désigne un isomorphisme
de F sur E. Alors, le rang est invariant quand on compose par g a gauche ou a droite, et ainsi :

1. rg(go f) =rg(f)
2. rg(fog)=rg(f)

» Pour le premier point, on identifie les noyauz avant d’invoquer la formule du rang. Pour le second point, on pourra revenir
au calcul de l'image a l'aide d’une base de E.

{Théoréme 6 (caractérisation des isomorphismes en dimension ﬁnie).]

Soient E, F' deux K-espaces vectoriels de dimension finie et f € L(F, F). On suppose de plus que dim(E) = dim(F), alors
les assertions suivantes sont équivalentes :

1. f est bijective de F sur F’

2. f est inversible & gauche : 3 g € L(F, E), go f =idg
3. f est injective

4. f est inversible & droite : 3 g € L(F, E), fog=1idr

5. f est surjective

» On vérifiera que les deuz cycles suivants sont bien équivalents : (1) < (2) < (3) et (1) & (4) & (5)...
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