
Espaces vectoriels et cas particulier de la dimension finie

Chapitre 0

Théorème du rang et applications

Pour aller plus loin
Ce chapitre est important car il nous prépare tout doucement aux chapitres fondamentaux de spé : celui sur la réduction
des endomorphismes et celui sur les endormorphismes remarquables d’un espace euclidien. D’ailleurs, ces notions recouvrent
presque tous les sujets de concours en algèbre... On essaiera donc de bien comprendre l’objectif sous-jacent : à partir d’une
décomposition de l’espace bien choisie, on peut obtenir des tableaux numériques plus faciles à manipuler, et ainsi rendre plus
facile la résolution de certains problèmes algébriques.

Définition Soient E,F deux K-espaces vectoriels et f : E → F . On rappelle que f est un morphisme d’espaces vectoriels
ou plus simplement une application linéaire si elle respecte les lois associées, c’est à dire si :

∀ λ ∈ K, ∀ x, y ∈ E, f(λx+ y) = λf(x) + f(y)

On note encore L(E,F ) l’espace vectoriel des applications linéaires de E dans F , et en particulier,

• on rappelle que f est un isomorphisme s’il s’agit d’une application linéaire bijective.

• on rappelle que f est un endomorphisme s’il s’agit d’une application linéaire de E dans lui-même, c’est à dire f ∈ L(E).

• on rappelle que f est un automorphisme s’il s’agit d’un endomorphisme bijectif, c’est à dire f ∈ GL(E).

Soient E,F deux K-espaces vectoriels et f : E → F une application linéaire. Alors,

1. f est injective ⇔ Ker(f) = {0E}

2. f est surjective ⇔ Im(f) = F

Théorème 1 (caractérisation de l’injectivité et la surjectivité d’une application linéaire).

I Seul le premier point mérite notre attention; il suffit en fait de procéder par double implication et on n’oubliera pas que f
est ici une application linéaire.

Soient E,F deux K-espaces vectoriels de dimension finie, et f ∈ L(E,F ). Alors, en notant (e1, . . . , en) une base quelconque
de E :

1. Im(f) = V ect(f(e1), . . . , f(en)).

2. f est bijective si et seulement si f(e1), . . . , f(en) constituent une base de F .

Et si ce dernier cas est vérifié, on en déduit que : dim(E) = dim(F ) et les espaces sont dits isomorphes.

Propriété 2 (image d’une base par une application linéaire).

I Le premier point est immédiat, et pour le second, on procède par double implication.

Soient E,F deux K-espaces vectoriels de dimension finie. Alors, L(E,F ) est un K-espace vectoriel de dimension finie vérifiant
:

dim(L(E,F )) = dim(E)× dim(F )

En pariculier, on a : dim(L(E)) = dim(L(E,E)) = dim(E)2.

Théorème 3 (dimension de L(E,F )).
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I Pour une base (ei), on construit φ : f 7→ (f(e1), . . . , f(en)) ∈ Fn et on montre qu’il s’agit d’un isomorphisme.

En effet, la linéarité de φ est immédiate par opérations sur les n-uplets. De plus,

• soit f ∈ L(E,F ), alors φ(f) = 0Fn ⇔ ∀i ∈ J1, nK, f(ei) = 0F , ce qui donne f = 0 et ainsi, φ est injective.

• considérons alors (y1, . . . , yn) ∈ Fn, on peut définir l’application linéaire f par f : ei 7−→ yi, et par linéarité on obtient
bien une application linéaire de E dans F . Par conséquent, (y1, . . . , yn) = φ(f) et φ est surjective.

On en déduit que φ est un isomorphisme et par passage aux dimensions, dim(L(E,F )) = dim(Fn) = n.dim(F ) = dim(E).dim(F ).

Remarque En particulier, cet isomorphisme traduit le fait qu’une application linéaire est entièrement déterminée par l’image
d’une base. Et ainsi, on pourra retenir que pour deux applications linéaires f et g :

f = g ⇔ ∀ i ∈ J1, nK, f(ei) = g(ei)

Soient E,F deux K-espaces vectoriels et f ∈ L(E,F ). Si E est de dimension finie, alors tout supplémentaire de Ker(f) est
isomorphe à Im(f) et dans ce cas, en notant rg(f) = dim(Im(f)), il vient :

dim(E) = dim(Ker(f)) + rg(f)

Théorème 4 (du rang et formule du rang associée).

I On note G un supplémentaire de Ker(f) dans E et on construit φ : x ∈ G 7→ f(x) ∈ Im(f) dont on montre qu’elle définit
un isomorphisme de G sur Im(f).

Ce théorème fondamental est très pratique car étant donné des informations sur le noyau, on en déduit dans le cas d’espaces
vectoriels de dimension finie, des informations sur l’image et réciproquement !

Exemple 1 Soit n ∈ N. On considère f l’application définie sur Rn[X] par :

f : P 7→ f(P ) = P (X + 1) + P (X − 1)− 2P (X)

1. Montrer que f est un endomorphisme de Rn[X].

2. Déterminer Ker(f), puis en déduire Im(f).

Soient E,F deux K-espaces vectoriels de dimension finie et f ∈ L(E,F ). On suppose de plus que g désigne un isomorphisme
de F sur E. Alors, le rang est invariant quand on compose par g à gauche ou à droite, et ainsi :

1. rg(g ◦ f) = rg(f)

2. rg(f ◦ g) = rg(f)

Propriété 5 (invariance du rang par composition avec un isomorphisme).

I Pour le premier point, on identifie les noyaux avant d’invoquer la formule du rang. Pour le second point, on pourra revenir
au calcul de l’image à l’aide d’une base de E.

Soient E,F deux K-espaces vectoriels de dimension finie et f ∈ L(E,F ). On suppose de plus que dim(E) = dim(F ), alors
les assertions suivantes sont équivalentes :

1. f est bijective de E sur F

2. f est inversible à gauche : ∃ g ∈ L(F,E), g ◦ f = idE

3. f est injective

4. f est inversible à droite : ∃ g ∈ L(F,E), f ◦ g = idF

5. f est surjective

Théorème 6 (caractérisation des isomorphismes en dimension finie).

I On vérifiera que les deux cycles suivants sont bien équivalents : (1)⇔ (2)⇔ (3) et (1)⇔ (4)⇔ (5)...
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