
Espaces vectoriels et cas particulier de la dimension finie

Chapitre 0

Décomposition en somme directe de sous-espaces vectoriels

Pour aller plus loin
Ce chapitre est important car il nous prépare tout doucement aux chapitres fondamentaux de spé : celui sur la réduction
des endomorphismes et celui sur les endormorphismes remarquables d’un espace euclidien. D’ailleurs, ces notions recouvrent
presque tous les sujets de concours en algèbre... On essaiera donc de bien comprendre l’objectif sous-jacent : à partir d’une
décomposition de l’espace bien choisie, on peut obtenir des tableaux numériques plus faciles à manipuler, et ainsi rendre plus
facile la résolution de certains problèmes algébriques.

Définition Soient F1, . . . , Fn des sous-espaces vectoriels d’un K-espace vectoriel E. On rappelle que la somme des sous-espaces
vectoriels F1, . . . , Fn désigne le sous-espace noté F1 + . . . + Fn et défini par :

F1 + . . . + Fn = {x1 + . . . + xn, ∀ i ∈ J1, nK, xi ∈ Fi}

On dit alors qu’il s’agit d’une somme directe si tout vecteur de F1 + . . . + Fn s’écrit de manière unique, c’est à dire si :

x1 + . . . + xn = x′1 + . . . + x′n ⇒ ∀ i ∈ J1, nK, xi = x′i

Et dans ce cas, on note F1 ⊕ . . .⊕ Fn la somme directe.

Soient F1, . . . , Fn des sous-espaces vectoriels d’un K-espace vectoriel E. Alors,

F1 ⊕ . . .⊕ Fn ⇔ (x1 + . . . + xn = 0E ⇒ ∀ i ∈ J1, nK, xi = 0E)

Ce qui équivaut à dire que 0E admet pour seule décomposition : 0E = 0E + . . . + 0E . On parle de l’unicité de la
décompostion du 0E .

Propriété 1 (caractérisation d’une somme directe de n sous-espaces vectoriels).

I En travaillant par double implication, il suffit de revenir à la définition.

En effet,

• dans le sens direct, si toutes les décompositions dans F1 + . . . + Fn sont uniques, celles du 0E également.

• dans le sens réciproque, si on suppose que l’écriture du 0E est unique et en considérant deux décompositions :

x = x1 + . . . + xn = y1 + . . . + yn ⇒
n∑

i=1

xi − yi︸ ︷︷ ︸
∈Fi

= 0E ⇒ ∀i ∈ J1, nK, xi = yi

Exemple 1 On se place dans E = R3[X] et on définit :

F = V ect(1, X), G = {P ∈ E,P (1) = P (−1) = 0}, H = V ect(X3)

1. Montrer que F,G et H désignent des sev de E.

2. La somme F + G + H est-elle directe ?

Définition Soient E un K-espace vectoriel. On dit que E se décompose en somme directe s’il existe F1, . . . , Fn des sous-
espaces vectoriels de E tels que :

E = F1 ⊕ . . .⊕ Fn ⇔ ∀ x ∈ E, ∃!(x1, . . . , xn) ∈ F1 × . . .× Fn, x = x1 + . . . + xn

Autrement dit, tout vecteur de E peut se décomposer de façon unique comme une somme de vecteurs appartenant à chacun de
ces sous-espaces.



MP - Lycée Chrestien de Troyes
Chapitre 0

Espaces vectoriels et cas particulier de la dimension finie

Soient E un K-espace vectoriel et F1, . . . , Fn des sous-espaces vectoriels de E. Alors:

E = ⊕n
i=1Fi ⇔

{
E = F1 + . . . + Fn

(x1 + . . . + xn = 0E ⇒ ∀ i ∈ J1, nK, xi = 0E)

Corollaire 2 (caractérisation d’une décomposition en somme directe).

Soient F,G deux sous-espaces vectoriels d’un K-espace vectoriel E. Alors,

E = F ⊕G ⇔

{
F + G = E

F ∩G = {0E}

On dit alors que F et G consituent des sous-espaces vectoriels supplémentaires.

Théorème 3 (cas particulier d’une décomposition en somme directe de deux sous-espaces vectoriels).

I On peut procèder par double implication en revenant par exemple à la définition d’une décomposition en somme directe.

Exemple 2 On se place dans F(R,R) et on note P (R,R) l’ensemble des fonctions paires définies sur R, I(R,R) l’ensemble des
fonctions impaires définies sur R.
Montrer que P (R,R) et I(R,R) constituent des sous-espaces vectoriels supplémentaires de F(R,R).

Définition Soient E un K-espace vectoriel et F1, . . . , Fn des sous-espaces vectoriels tels que :

E = ⊕n
i=1Fi ⇔ ∀ x ∈ E, ∃! (x1, . . . , xn) ∈ F1 × . . .× Fn, x = x1 + . . . + xn

Pour tout i ∈ J1, nK, on définit alors la projection sur Fi parallèlement à ⊕j 6=iFj par :

pi : x ∈ E 7−→ xi ∈ Fi

c’est à dire qu’à tout vecteur x ∈ E, pi renvoie sa composante sur Fi.

Remarque De façon immédiate, toute projection relative à une décomposition de l’espace est un projecteur au sens où
pi ◦ pi = pi. On pourra confondre les notions et parler de projecteurs associés à une décomposition.

Soit E un K-espace vectoriel et notons f un projecteur de E, c’est à dire :{
f ∈ L(E)

f ◦ f = f

Alors, on a la décomposition : E = Ker(f)⊕ Im(f).

Propriété 4 (projecteur et décomposition en somme directe).

I Pour aller chercher cette décomposition, on peut revenir à la caractérisation précédente.

Définition Soient E un K-espace vectoriel et F1, . . . , Fn des sous-espaces vectoriels tels que :

E = ⊕n
i=1Fi ⇔ ∀ x ∈ E, ∃! (x1, . . . , xn) ∈ F1 × . . .× Fn, x = x1 + . . . + xn

Pour tout i ∈ J1, nK, on définit alors la symétrie par rapport Fi et de direction ⊕j 6=iFj par :

si : x ∈ E 7−→ −x1 − . . .− xi−1 + xi − xi+1 − . . .− xn

c’est à dire qu’à tout vecteur x ∈ E, si renvoie le vecteur dont les composantes ont été transformées en leurs opposées à l’exception
de la composante sur Fi qui est restée invariante.

Remarque De façon immédiate, toute symétrie relative à une décomposition de l’espace est une symétrie vectorielle au sens
où si ◦ si = idE . On pourra confondre les notions et parler de symétries associées à une décomposition.
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Soit E un K-espace vectoriel et notons f une symétrie de E, c’est à dire :{
f ∈ L(E)

f ◦ f = idE

Alors, Ker(f − idE) et Ker(f + idE) désignent deux sous-espaces vectoriels et on a la décomposition :

E = Ker(f − idE)⊕Ker(f + idE)

Propriété 5 (symétrie et décomposition en somme directe).

I Pour aller chercher cette décomposition, on peut revenir à la caractérisation précédente.

Remarque Encore une fois, dans le cas particulier d’un espace vectoriel de dimension finie, il est plus facile de vérifier une
telle décomposition :

Soit E un K-espace vectoriel de dimension finie, et notons F1, . . . , Fp des sous-espaces vectoriels de E. Alors,

E = F1 ⊕ . . .⊕ Fp ⇔

{
E = F1 + . . . + Fp

dim(E) =
∑p

i=1 dim(Fi)
⇔

{
(x1 + . . . + xp = 0E ⇒ ∀ i ∈ J1, pK, xi = 0E)

dim(E) =
∑p

i=1 dim(Fi)

Et dans ce cas, on construit naturellement une base de E adaptée à cette décomposition en concaténant des bases de
chacun des sous-espaces Fi.

Propriété 6 (caractérisation d’une décomposition en somme directe en dimension finie).

I On procède par double implication : à chaque fois, on cherche à construire une base de F1 + . . . + Fp avant de conclure.

Remarque Plus généralement, si on note Bi une base de Fi, alors on pourra retenir que ∪p
i=1Bi, la concaténation des bases,

nous donne a priori une famille génératrice de F1 + . . . + Fp et ainsi, on a toujours :

dim(F1 + . . . + Fp) ≤
p∑

i=1

Card(Bi) =

p∑
i=1

dim(Fi)

et donc, il y a égalité si et seulement si la concaténation est une base de F1 + . . .+Fp, c’est à dire lorsque tout vecteur de la
somme se décompose de façon unique. Autrement dit, cela signifie qu’il y a égalité si et seulement si la somme est directe.

Soit E un K-espace vectoriel de dimension finie telle que dim(E) = n. On note F,G deux sous-espaces vectoriels de E. Alors:

dim(F + G) = dim(F ) + dim(G)− dim(F ∩G)

Corollaire 7 (formule de Grassmann).

I Etant en dimension finie, on introduit F1 et G1 des supplémentaires de F ∩ G dans F et G, avant de montrer que :
F + G = F1 ⊕ F ∩G⊕G1. Par passage aux dimensions, on en tirera la formule donnée.

Pour cela, on revient à la caractérisation précédente :

F + G = F1 ⊕ F ∩G⊕G1 ⇔

{
F + G = F1 + F ∩G + G1

décomposition unique du 0E

Le premier point est rapide : il suffit de vérifier qu’il y a bien une double inclusion.
Pour le second point, on considère une décomposition du 0E de la forme :

0E = xF1 + xF∩G + xG1 (∗)

En particulier, xF1 = −(xF∩G +xG1) et donc, xF1 ∈ F mais aussi à F ∩G, d’où par somme directe de F1⊕F ∩G, xF1 = 0E.
Dans ce cas, (∗)⇔ 0E = xF∩G + xG1 ⇔ xG1 = −xF∩G, et donc ils appartiennent à F ∩G et G1, d’où par somme ddirecte,
xG1 = xF∩G = 0E.
Finalement, on en déduit que F +G = F1⊕F ∩G⊕G1 et par passage aux dimensions, on récupère la formule de Grassmann.
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Soit E un K-espace vectoriel de dimension finie telle que dim(E) = n. On note F,G deux sous-espaces vectoriels de E. Alors:

E = F ⊕G⇔

{
E = F + G

dim(E) = dim(F ) + dim(G)
⇔

{
F ∩G = {0}
dim(E) = dim(F ) + dim(G)

Corollaire 8 (cas particulier d’une décompostion en somme directe de deux sous-espaces vectoriels en dimension finie).

I On utilisera à la fois la formule de Grassmann et les considérations sur la dimension d’un sous-espace vectoriel.

Exemple 3 Dans E = Rn[X] (n ≥ 3), on définit F par :

F = {P ∈ E, P (0) = P ′(0) = P ′′(0) = 0}

1. Montrer que F est un sous-espace vectoriel de E.

2. Montrer alors que E = R2[X]⊕ F .
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