Chapitre 0

Espaces vectoriels et cas particulier de la dimension finie

Notion de bases d’un espace vectoriel

Pour aller plus loin

Ce chapitre est important car il nous prépare tout doucement aux chapitres fondamentaux de spé : celui sur la réduction
des endomorphismes et celui sur les endormorphismes remarquables d’un espace euclidien. D’ailleurs, ces notions recouvrent
presque tous les sujets de concours en algébre... On essaiera donc de bien comprendre 1’objectif sous-jacent : a partir d’une
décomposition de I’espace bien choisie, on peut obtenir des tableaux numériques plus faciles & manipuler, et ainsi rendre plus
facile la résolution de certains problémes algébriques.

K désigne encore un sous-corps de C : R ou C lui-méme.

Définition Soient F un K-espace vectoriel et (z1,...,%,) une famille finie de vecteurs de E.
e On rappelle que les vecteurs (z1,...,z,) sont linéairement indépendants ou désignent une famille libre si :
V()\h...,)\n) EK”, MZ1+ ...+ AT =01 =...= )\, =
e On rappelle que les vecteurs (z1,...,zy) sont linéairement dépendants ou désignent une famille liée s’ils ne sont pas

libres, c’est a dire :
I, ) €K™, M1 + ... + Aoy, = 0 avec (\;) non tous nuls

e On rappelle que les vecteurs (z1,...,T,) sont générateurs ou désignent une famille génératrice si tout vecteur de F
peut s’écrire comme combinaison linéaire de ces vecteurs, c’est a dire :

VeeE, 3(\,..., ) €K", 2 =X \ix1+...+ Az, ouencore E = Vect(zri,...,Tn)

Propriété 1 (caractérisation d’une famille liée).]

Soient E un K-espace vectoriel et (z1,...,2y) une famille de vecteurs de E. Alors :

(z1,...,zn) sont liés & D'un de ses vecteurs peut s’écrire comme combinaison des autres

» On procéde simplement par double implication.
En effet,
e si la famille est liée, il existe des scalaires non tous nuls tels que :
Mx1+ ...+ \xn =08
et si on note ig l'indice tel que N\i, # 0, alors xi, = —(1/Niy) Z/?“-HT*{/U} Nii.
e réciproquement, si l’'un d’entre eux s’écrit en fonction des autres. On a par exemple :

Tiy = Z Aizi <& Mx1+ ...+ (—Daxig + ...+ Az, = 0p

i€[1,n]—{io} #0

et donc, la famille est liée.

Remarques

1. Une famille constituée d’un seul vecteur & € E est donc libre si et seulement si ce vecteur est non nul. De la méme
fagon, une famille constituée de deux vecteurs (z1,z2) est libre si et seulement si ces vecteurs ne sont pas colinéaires.

2. On fera attention a bien comprendre cette définition : si des vecteurs sont libres, on ne peut pas dire qu’il existe une
combinaison linéaire nulle... mais s’il en existe une, les scalaires n’ont pas d’autres choix que d’étre tous nuls !

3. Dans le cas particulier ol la famille de vecteurs (x;)ics est infinie, on adapte ces définitions et ainsi :
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e une telle famille est libre si toute sous-famille finie de vecteurs est libre.
e une telle famille est liée s’il existe une sous-famille finie de vecteurs qui est liée.

e une telle famille est génératrice si tout vecteur de E peut s’écrire comme une combinaison linéaire finie de ces
vecteurs.

Définition Soient E un K-espace vectoriel et (z1,...,2,) une famille finie de vecteurs de E. On dit que les vecteurs (z1,...,zx)
constituent une base de E si tout vecteur de E peut s’écrire de fagon unique comme combinaison linéaire de ces vecteurs, c’est &
dire :

VezekE, 3 (N) €K™, z=Mz1+ ...+ Ay

Et dans ce cas, les scalaires (A1, ..., \,) assurant la décomposition sont appelés les coordonnées de z dans la base (z;).

—[Propriété 2 (caractérisation d’une base vue comme une famille libre et génératrice).}

Soient E un K-espace vectoriel et (z1,...,2,) une famille finie de vecteurs de E. Alors :

(z;) est une base & (z1,...,2y) constituent une famille libre et génératrice de

» On procéde par double implication en revenant aux définitions des familles liées et libres.

En effet,

e si la famille (x;) est une base, alors tout vecteur de E se décompose en fonction de ces vecteurs et donc, elle est
génératrice. Reste a montrer qu’elle est libre. Pour cela, on considére (A1,...,An) € K" tel que :

Z Nizi = 0 mais on a ausst : Ox1 + ...+ 0z, =0g

1=1

Par unicité de la décomposition, on en déduit que pour tout i, \; = 0 et la famille est libre.

e si la famille est libre et génératrice, alors elle est génératrice et tout vecteur x € E se décompose en fonction de ces
vecteurs. Reste a montrer que la décomposition est unique. Pour cela, on considére deur décompositions :

n mn
xr = E NiTi = E Wi

i=1 i=1

Alors, par différence : Z:’:] (Ni — pi)x; = 0g et la famille étant libre, pour tout i, \i — pi =0 = A\f = ;.

Théoréme 3 (de la base extraite).}

Soit F un K-espace vectoriel non réduit au vecteur nul. On suppose que E admet une famille génératrice finie de sorte que
E =Vect(ey,...,en).
Alors, il existe une sous-famille (e;y, ..., e;,) libre de cardinal maximal, et ces vecteurs constituent une base de E.

» On considére 'ensemble A = {Card(L), L est une sous-famille de (e;) libre} puis on fera appel auzr aziomes de N.

—[Théoréme 4 (de la base incompléte).}

Soit £ un K-espace vectoriel non réduit au vecteur nul. On suppose que E admet une famille génératrice finie de sorte que
E = Vect(ei,...,en) et on note (fi,..., fp) une famille libre quelconque de E.

Alors, il existe une sur-famille (fi,..., fp, fo+1,. ., fn) génératrice de cardinal minimal, et ces vecteurs constituent une base
de E.

» On considére ’ensemble {Card(G), G est une sur-famille de (f;) génératrice}, puis on fera appel auz aziomes de N.

En effet, cet ensemble est non vide car par exemple, la réunion (f1,...,[f,) U (e1,...,en) désigne une sur-famille de (f;
Jo ) 1 J I ) ’ b

génératrice dans 2. Ainsi, A désigne une partie de N non vide : d’aprés les axiomes de N, il existe G une sur-famille

(fiseoy fos fot1y- -y fn) de cardinal minimal et génératrice dans E. Reste a montrer que cette famille est aussi libre pour

avoir une base.
Pour cela, on considére des scalaires (\;) tels que :

Z Xifi =05 (¥)
1=1
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De plus, s’il existe io € [p+1,n] tel que \; # 0, alors la famille est liée et donc, on aurait par exemple (fi)ii, une sur-famille
de (f1,...,fp) consituée de n — 1 vecteurs et génératrice de E : ce n’est pas possible car on a exhibé une famille de cardinal
minimal n. Ainsi, pour tout i € [p+ 1,n], \i =0 et donc :

3
(*) = Z )\r,',f,j =0g
=1

mais ces vecteurs étant libres par hypothése, il vient aussi : A; = 0. D’ou, la liberté de (fi,..., fp, fo+1,--+s [n)-
Finalement, on a bien construit une base de E a partir des vecteurs indépendants fi,..., fp.
Remarque Ces deux théorémes nous donnent ’existence d’une base, mais on fera attention :

e le premier nous permet d’éliminer des vecteurs générateurs afin de construire concretement une base : on cherche en
fait a en extraire une famille libre maximale.

e le second nous donne ’existence d’une base, comme famille génératrice minimale mais elle ne nous permet pas de
Pobtenir de fagon concrete.

Propriété 5 (lemme pratique et définition de la dimension).)

Soit E un K-espace vectoriel non réduit au vecteur nul et notons note (e1,...,e,) une base de E. Alors, on peut montrer
que toute famille de p vecteurs, p > n, est nécessairement liée.
On en déduit que toutes les bases de E possédent le méme nombre de vecteurs : c’est la dimension de E notée dim(E).

» On montre d’abord par récurrence sur n € N* que n + 1 vecteurs sont nécessairement liés. Avec p > n, on aura donc une
sur-famille d’une famille liée...

En effet, par récurrence, on vérifie :

e si on considere deux vecteurs s’exprimant a partir d’un seul vecteur de base, alors on a par exemple :
ur = Aie1 et uz = Aaeq

ou bien uz est nul, et la famille (u1,u2) est liée, ou bien uz # 0 et donc, A2 # 0 ce qui entraine que ur = (A1 /A2)uz,
et la famille est toujours liée.

e soit n € N*, supposons le résultat vrai au rang n et considérons une famille de n + 2 vecteurs pouvant s’exprimer
partir de n + 1 vecteurs :
ur = Ar,1€1 + ...+ A nt1€nt1

Un4+1 = An41,1€1 + - .. + Ant1,nt1€nt1

Un+2 = Ap42,1€1 + « o + A2, nt1€nt1
On va raisonner par disjonction des cas.
* st pour tout i € [1,n+ 2], Xijnt1 = 0, alors les n+ 1 premiéres lignes nous donnent une famille de n+ 1 vecteurs qui
ne s’expriment qu’a partir de n vecteurs et par hypothése, (ui,...,unt1) est liée. La sur-famille (u1, ..., Unt1, Unt2)
est alors liée.
x s’il existe un scalaire \; n+1 # 0, par exemple on peut supposer Api2nt1 # 0, alors on construit une nouvelle famille
de vecteurs par opérations sur les lignes. Ainsi, on pose :

Y1 = ur — (>\1,n+1/>\n+2.n+1)un+2, ety €L Yngp1 = Ung1 — ()\n+1,n+1//\n+2.n+1)’un+2

Dans ce cas, yi,...,Yn+1 ne s’expriment qu’a partir des vecteurs ei,...,en et par hypothése, ils sont nécessairement
liés. On en déduit qu’il existe des scalaire snon tou snuls (u; tels que :

n+1

> wiyi =05
=1

En remplacant les vecteurs y; par leur expression, on exhibe une combinaison linéaire de vecteurs u; non tous nuls et
la famille est liée. Ce qui livre I’hérédité.

Par le principe de récurrence, toute famille de n + 1 vecteurs s’exprimant a partir de n vecteurs sont liés. Si p > n, alors la
sur-famille (u1, . ..,up) serait forcément liée. On en déduit qu’une base de E ne peut, ici et avec nos hypothéses, ne contenir
que n vecteurs.
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Remarques

1. Par convention, si E est réduit au vecteur nul, on posera : dim(E) = 0.

2. On pourra quand méme retenir que la dimension joue un réle important, car elle nous donnera a chaque fois un moyen
efficace d’obtenir des propriétés algébriques. Par exemple, on a les caractérisations suivantes :

{Corollaire 6 (caractérisation des bases parmi les familles libres).]

Soit F un K-espace vectoriel de dimension finie telle que dim(E) = n. Alors :

1. toute famille libre comporte au plus n vecteurs ;

2. une famille libre est une base si et seulement si elle contient exactement n vecteurs.

» Le premier point est donné par le lemme pratique; le second sera démontré par double-implication.

{Corollaire 7 (caractérisation des bases parmi les familles génératrices).]

Soit E un K-espace vectoriel de dimension finie telle que dim(E) = n. Alors :

1. toute famille génératrice comporte au moins n vecteurs ;

2. une famille génératrice est une base si et seulement si elle contient exactement n vecteurs.

» Le premier point est donné par le lemme pratique; le second sera démontré par double-implication.

Exemple 1 Soit £ un K-espace vectoriel de dimension n > 1 et f un endomorphisme nilpotent non nul de E. On note p le plus
petit entier non nul tel que f? = 0z(g).

1. Montrer qu’il existe = # 0 tel que la famille (z, f(z), f2(x),..., fP~*(x)) est libre.

2. En déduire que f" = 0z(g).

Propriété 8 (cas particulier du produit cartésien).]

Soient E, F' des K-espaces vectoriels de dimension finie telle que dim(E) = n, dim(F) = p. Alors, on a :

dim(E x F) = dim(FE) + dim(F)

» Il suffit de vérifier que (e1,0),...,(€n,0),(0, f1),...,(0, fp) désignent une base de E X F.
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