
Espaces vectoriels et cas particulier de la dimension finie

Chapitre 0

Notion de bases d’un espace vectoriel

Pour aller plus loin
Ce chapitre est important car il nous prépare tout doucement aux chapitres fondamentaux de spé : celui sur la réduction
des endomorphismes et celui sur les endormorphismes remarquables d’un espace euclidien. D’ailleurs, ces notions recouvrent
presque tous les sujets de concours en algèbre... On essaiera donc de bien comprendre l’objectif sous-jacent : à partir d’une
décomposition de l’espace bien choisie, on peut obtenir des tableaux numériques plus faciles à manipuler, et ainsi rendre plus
facile la résolution de certains problèmes algébriques.

K désigne encore un sous-corps de C : R ou C lui-même.

Définition Soient E un K-espace vectoriel et (x1, . . . , xn) une famille finie de vecteurs de E.

• On rappelle que les vecteurs (x1, . . . , xn) sont linéairement indépendants ou désignent une famille libre si :

∀ (λ1, . . . , λn) ∈ Kn, λ1x1 + . . .+ λnxn = 0⇒ λ1 = . . . = λn = 0

• On rappelle que les vecteurs (x1, . . . , xn) sont linéairement dépendants ou désignent une famille liée s’ils ne sont pas
libres, c’est à dire :

∃ (λ1, . . . , λn) ∈ Kn, λ1x1 + . . .+ λnxn = 0 avec (λi) non tous nuls

• On rappelle que les vecteurs (x1, . . . , xn) sont générateurs ou désignent une famille génératrice si tout vecteur de E
peut s’écrire comme combinaison linéaire de ces vecteurs, c’est à dire :

∀ x ∈ E, ∃ (λ1, . . . , λn) ∈ Kn, x = λ1x1 + . . .+ λnxn ou encore E = V ect(x1, . . . , xn)

Soient E un K-espace vectoriel et (x1, . . . , xn) une famille de vecteurs de E. Alors :

(x1, . . . , xn) sont liés⇔ l’un de ses vecteurs peut s’écrire comme combinaison des autres

Propriété 1 (caractérisation d’une famille liée).

I On procède simplement par double implication.

En effet,

• si la famille est liée, il existe des scalaires non tous nuls tels que :

λ1x1 + . . .+ λnxn = 0E

et si on note i0 l’indice tel que λi0 6= 0, alors xi0 = −(1/λi0)
∑

i∈J1,nK−{i0} λixi.

• réciproquement, si l’un d’entre eux s’écrit en fonction des autres. On a par exemple :

xi0 =
∑

i∈J1,nK−{i0}

λixi ⇔ λ1x1 + . . .+ (−1)
6=0

xi0 + . . .+ λnxn = 0E

et donc, la famille est liée.

Remarques

1. Une famille constituée d’un seul vecteur x ∈ E est donc libre si et seulement si ce vecteur est non nul. De la même
façon, une famille constituée de deux vecteurs (x1, x2) est libre si et seulement si ces vecteurs ne sont pas colinéaires.

2. On fera attention à bien comprendre cette définition : si des vecteurs sont libres, on ne peut pas dire qu’il existe une
combinaison linéaire nulle... mais s’il en existe une, les scalaires n’ont pas d’autres choix que d’être tous nuls !

3. Dans le cas particulier où la famille de vecteurs (xi)i∈I est infinie, on adapte ces définitions et ainsi :
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• une telle famille est libre si toute sous-famille finie de vecteurs est libre.

• une telle famille est liée s’il existe une sous-famille finie de vecteurs qui est liée.

• une telle famille est génératrice si tout vecteur de E peut s’écrire comme une combinaison linéaire finie de ces
vecteurs.

Définition Soient E un K-espace vectoriel et (x1, . . . , xn) une famille finie de vecteurs de E. On dit que les vecteurs (x1, . . . , xn)
constituent une base de E si tout vecteur de E peut s’écrire de façon unique comme combinaison linéaire de ces vecteurs, c’est à
dire :

∀ x ∈ E, ∃! (λi) ∈ Kn, x = λ1x1 + . . .+ λnxn

Et dans ce cas, les scalaires (λ1, . . . , λn) assurant la décomposition sont appelés les coordonnées de x dans la base (xi).

Soient E un K-espace vectoriel et (x1, . . . , xn) une famille finie de vecteurs de E. Alors :

(xi) est une base ⇔ (x1, . . . , xn) constituent une famille libre et génératrice de E

Propriété 2 (caractérisation d’une base vue comme une famille libre et génératrice).

I On procède par double implication en revenant aux définitions des familles liées et libres.

En effet,

• si la famille (xi) est une base, alors tout vecteur de E se décompose en fonction de ces vecteurs et donc, elle est
génératrice. Reste à montrer qu’elle est libre. Pour cela, on considère (λ1, . . . , λn) ∈ Kn tel que :

n∑
i=1

λixi = 0E mais on a aussi : 0x1 + . . .+ 0xn = 0E

Par unicité de la décomposition, on en déduit que pour tout i, λi = 0 et la famille est libre.

• si la famille est libre et génératrice, alors elle est génératrice et tout vecteur x ∈ E se décompose en fonction de ces
vecteurs. Reste à montrer que la décomposition est unique. Pour cela, on considère deux décompositions :

x =

n∑
i=1

λixi =

n∑
i=1

µixi

Alors, par différence :
∑n

i=1(λi − µi)xi = 0E et la famille étant libre, pour tout i, λi − µi = 0⇒ λI = µi.

Soit E un K-espace vectoriel non réduit au vecteur nul. On suppose que E admet une famille génératrice finie de sorte que
E = V ect(e1, . . . , en).
Alors, il existe une sous-famille (ei1 , . . . , eip) libre de cardinal maximal, et ces vecteurs constituent une base de E.

Théorème 3 (de la base extraite).

I On considère l’ensemble A = {Card(L), L est une sous-famille de (ei) libre} puis on fera appel aux axiomes de N.

Soit E un K-espace vectoriel non réduit au vecteur nul. On suppose que E admet une famille génératrice finie de sorte que
E = V ect(e1, . . . , en) et on note (f1, . . . , fp) une famille libre quelconque de E.
Alors, il existe une sur-famille (f1, . . . , fp, fp+1, . . . , fn) génératrice de cardinal minimal, et ces vecteurs constituent une base
de E.

Théorème 4 (de la base incomplète).

I On considère l’ensemble {Card(G), G est une sur-famille de (fi) génératrice}, puis on fera appel aux axiomes de N.

En effet, cet ensemble est non vide car par exemple, la réunion (f1, . . . , fp) ∪ (e1, . . . , en) désigne une sur-famille de (fi)
génératrice dans E. Ainsi, A désigne une partie de N non vide : d’après les axiomes de N, il existe G une sur-famille
(f1, . . . , fp, fp+1, . . . , fn) de cardinal minimal et génératrice dans E. Reste à montrer que cette famille est aussi libre pour
avoir une base.
Pour cela, on considère des scalaires (λi) tels que :

n∑
i=1

λifi = 0E (∗)
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De plus, s’il existe i0 ∈ Jp+1, nK tel que λi 6= 0, alors la famille est liée et donc, on aurait par exemple (fi)i 6=i0 une sur-famille
de (f1, . . . , fp) consituée de n− 1 vecteurs et génératrice de E : ce n’est pas possible car on a exhibé une famille de cardinal
minimal n. Ainsi, pour tout i ∈ Jp+ 1, nK, λi = 0 et donc :

(∗)⇔
p∑

i=1

λifi = 0E

mais ces vecteurs étant libres par hypothèse, il vient aussi : λi = 0. D’où, la liberté de (f1, . . . , fp, fp+1, . . . , fn).
Finalement, on a bien construit une base de E à partir des vecteurs indépendants f1, . . . , fp.

Remarque Ces deux théorèmes nous donnent l’existence d’une base, mais on fera attention :

• le premier nous permet d’éliminer des vecteurs générateurs afin de construire concrètement une base : on cherche en
fait à en extraire une famille libre maximale.

• le second nous donne l’existence d’une base, comme famille génératrice minimale mais elle ne nous permet pas de
l’obtenir de façon concrète.

Soit E un K-espace vectoriel non réduit au vecteur nul et notons note (e1, . . . , en) une base de E. Alors, on peut montrer
que toute famille de p vecteurs, p > n, est nécessairement liée.
On en déduit que toutes les bases de E possèdent le même nombre de vecteurs : c’est la dimension de E notée dim(E).

Propriété 5 (lemme pratique et définition de la dimension).

I On montre d’abord par récurrence sur n ∈ N∗ que n+ 1 vecteurs sont nécessairement liés. Avec p > n, on aura donc une
sur-famille d’une famille liée...

En effet, par récurrence, on vérifie :

• si on considère deux vecteurs s’exprimant à partir d’un seul vecteur de base, alors on a par exemple :

u1 = λ1e1 et u2 = λ2e1

ou bien u2 est nul, et la famille (u1, u2) est liée, ou bien u2 6= 0 et donc, λ2 6= 0 ce qui entrâıne que u1 = (λ1/λ2)u2,
et la famille est toujours liée.

• soit n ∈ N∗, supposons le résultat vrai au rang n et considérons une famille de n + 2 vecteurs pouvant s’exprimer à
partir de n+ 1 vecteurs : 

u1 = λ1,1e1 + . . .+ λ1,n+1en+1

un+1 = λn+1,1e1 + . . .+ λn+1,n+1en+1

un+2 = λn+2,1e1 + . . .+ λn+2,n+1en+1

On va raisonner par disjonction des cas.
∗ si pour tout i ∈ J1, n+ 2K, λi,n+1 = 0, alors les n+ 1 premières lignes nous donnent une famille de n+ 1 vecteurs qui
ne s’expriment qu’à partir de n vecteurs et par hypothèse, (u1, . . . , un+1) est liée. La sur-famille (u1, . . . , un+1, un+2)
est alors liée.
∗ s’il existe un scalaire λi,n+1 6= 0, par exemple on peut supposer λn+2,n+1 6= 0, alors on construit une nouvelle famille
de vecteurs par opérations sur les lignes. Ainsi, on pose :

y1 = u1 − (λ1,n+1/λn+2,n+1)un+2, . . . , et yn+1 = un+1 − (λn+1,n+1/λn+2,n+1)un+2

Dans ce cas, y1, . . . , yn+1 ne s’expriment qu’à partir des vecteurs e1, . . . , en et par hypothèse, ils sont nécessairement
liés. On en déduit qu’il existe des scalaire snon tou snuls (µi tels que :

n+1∑
i=1

µiyi = 0E

En remplaçant les vecteurs yi par leur expression, on exhibe une combinaison linéaire de vecteurs ui non tous nuls et
la famille est liée. Ce qui livre l’hérédité.

Par le principe de récurrence, toute famille de n+ 1 vecteurs s’exprimant à partir de n vecteurs sont liés. Si p > n, alors la
sur-famille (u1, . . . , up) serait forcément liée. On en déduit qu’une base de E ne peut, ici et avec nos hypothèses, ne contenir
que n vecteurs.
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Remarques

1. Par convention, si E est réduit au vecteur nul, on posera : dim(E) = 0.

2. On pourra quand même retenir que la dimension joue un rôle important, car elle nous donnera à chaque fois un moyen
efficace d’obtenir des propriétés algébriques. Par exemple, on a les caractérisations suivantes :

Soit E un K-espace vectoriel de dimension finie telle que dim(E) = n. Alors :

1. toute famille libre comporte au plus n vecteurs ;

2. une famille libre est une base si et seulement si elle contient exactement n vecteurs.

Corollaire 6 (caractérisation des bases parmi les familles libres).

I Le premier point est donné par le lemme pratique; le second sera démontré par double-implication.

Soit E un K-espace vectoriel de dimension finie telle que dim(E) = n. Alors :

1. toute famille génératrice comporte au moins n vecteurs ;

2. une famille génératrice est une base si et seulement si elle contient exactement n vecteurs.

Corollaire 7 (caractérisation des bases parmi les familles génératrices).

I Le premier point est donné par le lemme pratique; le second sera démontré par double-implication.

Exemple 1 Soit E un K-espace vectoriel de dimension n > 1 et f un endomorphisme nilpotent non nul de E. On note p le plus
petit entier non nul tel que fp = 0L(E).

1. Montrer qu’il existe x 6= 0 tel que la famille (x, f(x), f2(x), . . . , fp−1(x)) est libre.

2. En déduire que fn = 0L(E).

Soient E,F des K-espaces vectoriels de dimension finie telle que dim(E) = n, dim(F ) = p. Alors, on a :

dim(E × F ) = dim(E) + dim(F )

Propriété 8 (cas particulier du produit cartésien).

I Il suffit de vérifier que (e1, 0), . . . , (en, 0), (0, f1), . . . , (0, fp) désignent une base de E × F .
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